Acknowledgement
Supported by : Hannam University
References
- L. CARLITZ, q-Bernoulli numbers and polynomials, Duke Math. J., 15(1948), 987-1000. https://doi.org/10.1215/S0012-7094-48-01588-9
- T. KIM. C.S. RYOO, L.C. JANG, S.H. RIM, Exploring the q-Riemann Zeta junction and q-Bernoulli polynomials, Discrete Dynamics in Nature and Society, 2005(2)(2005), 171-181. https://doi.org/10.1155/DDNS.2005.171
- C.S. RYOO, T. KIM. R.P. AGARWAL, Exploring the multiple Changhee q-Bernoulli polynomials, Inter. J. Comput. Math., 82(4)(2005), 483-493. https://doi.org/10.1080/00207160512331323362
- C.S. RYOO, T. KIM, R.P. AGARWAL, The structure of the zeros of the generalized Bernoulli polynomials, Neural Parallel Sci. Comput., 13(2005), 371-379.
- C.S. RYOO, A numerical investigation on the zeros of the Genocchi polynomials, Journal of Applied Mathematics and Computing, 22(2006), 125-132. https://doi.org/10.1007/BF02896465
- C.S. RYOO, A numerical computation on the structure of the roots of q-extension of Genocchi polynomials, Applied Mathematics Letters, 21(2008), 348-354. https://doi.org/10.1016/j.aml.2007.05.005
- C.S. RYOO, Calculating zeros of the twisted Genocchi polynomials, Advan. Stud. Contemp. Math., 17(2008), 147-159.
- C.S. RYOO, A numerical computation of the roots of q-Bernoulli polynomials, to appear in Journal of Computational Analysis and Applications.
- A. P. VESELOV AND J.P. WARD, On the real zeroes of the Hurwitz zeta-function and Bernoulli polynomials, math. GM/0205183, (2002).
- S.C. WOON , Analytic Continuation of Bernoulli Numbers, a New Formula for the Riemann Zeta Function, and the Phenonmenon of Scattering of Zeros, DAMTP-R-97/19, (1997). DAMTP-R-97/19