GLOBAL ASYMPTOTIC STABILITY OF A SECOND ORDER RATIONAL DIFFERENCE EQUATION

  • Abo-Zeid, R. (Department of Basic Science, faculty of Engineering, October 6 university)
  • Received : 2009.08.25
  • Accepted : 2009.10.05
  • Published : 2010.05.30

Abstract

The aim of this paper is to investigate the global stability, periodic nature, oscillation and the boundedness of solutions of the difference equation $x_{n+1}\;=\;\frac{A+Bx_{n-1}}{C+Dx_n^2}$, n = 0, 1, 2, ... where A, B are nonnegative real numbers and C, D > 0.

Keywords

References

  1. R.P. Agarwal, Dfference equations and inequalities, First edition, Marcel Dekker, (1992).
  2. C.H.Gibbons, M.R.S.Kulenovie and G.Ladas, On the recursive sequence $x_{n+1}$ = $\frac{\alpha+\beta_{x_{n-1}}}{\gamma+x_{n}}$, Math.Sci.Res.Hot-Line 4 (2) (2000) 1-11.
  3. E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
  4. V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with applications, Kluwer Academic, Dordrecht, 1993.
  5. A.E. Hamza, R. Khalaf-Allah, Dynamics of a second order rational difference equation, BAMS, 23 (1), (2008) Golden Jubilee Year Volume, 206-214.
  6. V.L. Kocic, G. Ladas, Global attractivity in a second order nonlinear difference equations, J. Math. Anal. Appl., 180 (1993) 144-150. https://doi.org/10.1006/jmaa.1993.1390
  7. M.R.S. Kulenovic, G. Ladas, N.P. Prokup, A rational difference equation, Comput. Math. Appl., 41 (2001) 671-678. https://doi.org/10.1016/S0898-1221(00)00311-4
  8. M.R.S. Kulenovic and G. Ladas, Dynamics of second order rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
  9. R.E.Mickens, Difference Equations,Theory and Applications 2nd Edition, Van Nostrand Renhold,1990.
  10. H. Sedaghat, Nonlinear Difference Equations, Theory and Applications to Social Science Models, Kluwer Academic Publishers, Dordrecht, 2003.