A Design of LDPC Decoder for IEEE 802.11n Wireless LAN

IEEE 802.11n 무선 랜 표준용 LDPC 복호기 설계

  • Jung, Sang-Hyeok (Center for Robot Technology and Manufacturing, Institute for Advanced Engineering) ;
  • Shin, Kyung-Wook (School of Electronic Engineering, Kumoh National Institute of Technology)
  • 정상혁 (고등기술연구원 로봇생산기술센터) ;
  • 신경욱 (금오공과대학교 전자공학부)
  • Received : 2010.01.26
  • Published : 2010.05.25

Abstract

This paper describes a LDPC decoder for IEEE 802.11n wireless LAN standard. The designed processor supports parity check matrix for block length of 1,944 and code rate of 1/2 in IEEE 802.11n standard. To reduce hardware complexity, the min-sum algorithm and layered decoding architecture are adopted. A novel memory reduction technique suitable for min-sum algorithm was devised, and our design reduces memory size to 25% of conventional method. The LDPC decoder processor synthesized with a $0.35-{\mu}m$ CMOS cell library has 200,400 gates and memory of 19,400 bits, and the estimated throughput is about 135 Mbps at 80 MHz@2.5v. The designed processor is verified by FPGA implementation and BER evaluation to validate the usefulness as a LDPC decoder.

본 논문에서는 IEEE 802.11n 무선 랜 표준용 LDPC 복호기 프로세서를 설계하였다. 설계된 프로세서는 IEEE 802.11n 표준의 블록길이 1,944와 부호화율 1/2의 패리티 검사 행렬을 지원하며, 하드웨어 감소를 위해 최소합 알고리듬과 layered 구조를 적용하였다. 최소합 알고리듬의 특징을 이용한 검사노드 메모리 최소화 방법을 고안하여 적용하였으며, 이를 통해 기존방법의 메모리 크기의 25%만을 사용하여 구현하였다. 설계된 프로세서를 $0.35-{\mu}m$ CMOS 셀 라이브러리로 합성한 결과, 200,400 게이트와 19,400 비트의 메모리로 구현되었으며, 80 MHz@2.5V로 동작하여 약 135 Mbps의 성능을 갖는다. 설계된 회로는 FPGA 구현을 통해 하드웨어 동작 검증과 복호성능을 분석하였으며, 이를 통해 설계된 LDPC 복호기의 유용성을 입증하였다.

Keywords

References

  1. R. Gallager, "Low-Density Parity-Check Codes," IRE Trans. Info. Theory, vol. IT-8, pp. 21-28, Jan. 1962.
  2. D. Mackay and R. Neal, "Near Shannon Limit Performance of Low Density Parity Check Codes," Electro. Lett., vol. 32, no. 6, pp. 1645-1646, Aug. 1962.
  3. . Rhicardson and R. Urbanke, "Efficient Encoding of Low Density Parity-Check Codes," IEEE Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001. https://doi.org/10.1109/18.910579
  4. J. W. Bond, S. Hui, abd H. Schmidt,"Constructing low-density parity-check codes," EUROCOMM 2000. Information System for Enhanced Public Safety and Security.IEEE/AFCEA, pp. 260-262, 2000.
  5. DVB-S2 Draft ETSI EN 302 307 V1.1.1 (2004-06), ETSI
  6. IEEE P802.11n/D3.07, Draft Amendment to Standard for Information Technology - Telecommunications and information exchange between systems-Local and Metropolitan networks-Specific requirements- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Enhancements for Higher Throughput, IEEE Std.802.11n, 2008.
  7. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Acess Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Std. 802.16e, 2005.
  8. IEEE Standard for Information Technology Tele- communications and Information Exchange Between Systems Local and Metropolitan Area Networks - Specific Requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/ CD) Access Method and Physical Layer and Management Parameters for 10 Gb/s Operation, Type 10GBASE-T, IEEE Std 802.2an, 2006.
  9. D.J.C. MacKay and R. M. Neal. "Near Shannon limit performance of low density parity check codes," IEE Electronic Letter, vol. 32, no. 18, pp. 1645- 1646, Aug. 1996. https://doi.org/10.1049/el:19961141
  10. F.R. Kschischang, B.J. Frey, and H.A. Loeliger, "Factor graphs and the sum product algorithm," IEEE Transaction on Information Theory, vol. 47, pp. 498-519, Feb., 2001. https://doi.org/10.1109/18.910572
  11. J. Chen and M. Fossorier, "Density evolution for two improved BP-based decoding algorithms of LDPC codes," IEEE Commun. Lett., vol. 6, pp. 208-210, May, 2002. https://doi.org/10.1109/4234.1001666
  12. M. Fossorier, M. Mihaljevic and H. Imai, "Reduced complexity iterative decoding of low-density parity check codes based on belief propagation," IEEE Trans. Commun., vol. 47, pp. 673-680, May 1999. https://doi.org/10.1109/26.768759
  13. Yang Sun, M. Karkooti and J. R. Cavallaro, "High Throughput, Parallel, Scalable LDPC Encoder/ Decoder Architecture for OFDM Systems," in IEEE Dallas Circuits and Systems Workshop (DCAS'06), Oct 2006.
  14. Mohamrnad M. Mansour and Naresh RShanbhag, "A Novel Design Methodology for High-Perfor- mance Programmable Decoder Cores for AA- LDPC Codes," Journal of VLSI Signal Processing Systems, 2005.
  15. C. Howland and A. Blanksby, "Parallel decoding arhitectures for low density parity check codes," Proc. IEEE Inter. Symp. Circuits Syst.(ISCAS), Sydney, Australia, pp. 742-745, May 2001.
  16. M. Bikerstaff et al., "A 24 Mb/s radix-4 LogMAP turbo decoder for 3GPP-HSDPA mobile wireless," IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 150–151, 2003.