A Study on Estimation of Motor Unit Location of Biceps Brachii Muscle using Surface Electromyogram

표면 근전도를 이용한 이두박근의 운동단위 위치 추정에 관한 연구

  • Park, Jung-Ho (EMC) ;
  • Lee, Ho-Yong (School of Electrical and Computer Engineering, University of Seoul) ;
  • Jung, Chul-Ki (School of Electrical and Computer Engineering, University of Seoul) ;
  • Lee, Jin (Dept. of Computer & Control Engineering, Kangwon National University) ;
  • Kim, Sung-Hwan (School of Electrical and Computer Engineering, University of Seoul)
  • 박중호 ;
  • 이호용 (서울시립대학교 전자전기컴퓨터공학부) ;
  • 정철기 (서울시립대학교 전자전기컴퓨터공학부) ;
  • 이진 (강원대학교 제어계측공학과) ;
  • 김성환 (서울시립대학교 전자전기컴퓨터공학부)
  • Received : 2010.03.03
  • Published : 2010.05.25

Abstract

In this paper, a new method to estimate MU (motor unit) location in the short head of BIC (biceps brachii) muscle using surface EMG (electromyogram) is proposed. The SMUAP (single motor unit action potential) is generated from a MU located at certain depth from the skin surface. The depth is referred as MU location. For estimating muscle force precisely, the information of the MU location is required. The reference SMUAPs are simulated based on anatomical structure of human muscle, and compared with acquired real EMG signals using 3-channel surface EMG electrode. The proposed method was compared with the results of previous researchers and verified its accuracy by computer simulation. From the simulation result in case of the MU located in 8[mm], the average estimation error of proposed method was 0.01[mm]. But the average estimation error of Roeleveld's method was 2.33[mm] and Akazawa's method was 1.70[mm]. Therefore the proposed method was more accurate than the methods of previous researchers.

본 논문에서는 표면 근전도(surface electromyogram, SEMG)를 이용하여 운동단위(motor unit, MU)의 위치(location)를 추정하는 새로운 방법을 제안하였다. 운동단위의 위치에 따라 운동단위 활동전위(motor unit action potential, MUAP), 나아가서는 표면 근전도의 크기(amplitude)가 변화하므로 운동단위의 위치 추정은 근력 추정에 있어서 중요하다. 제안된 방법은 표면근전도 시뮬레이션을 통해 취득한 기준 신호와 3 채널 표면전극을 이용하여 검출한 표면 근전도 신호를 비교하여 운동단위의 위치를 추정하는 방법이다. 운동단위 위치 추정의 정확도를 파악하기 위하여 컴퓨터 시뮬레이션을 통하여 취득한 MUAP를 본 연구에서 제안한 방법 및 기존 방법들을 적용하여 확인하였다. 시뮬레이션 결과 8[mm] 위치에 운동단위가 위치할 경우 본 논문에서 제안한 운동단위 위치 추정 방법은 0.01[mm]의 평균 추정 오차를 보였다. 반면에 Roeleveld가 제안한 추정 방법은 2.33[mm]의 평균 추정 오차를 보였으며 Akazawa가 제안한 추정 방법은 1.70[mm]의 평균 추정 오차를 보여 본 연구에서 제안한 운동단위 위치 추정 방법이 기존의 방법들에 비하여 더 정확한 위치 추정이 가능하였다.

Keywords

References

  1. C. J. De Luca, "Physiology and Mathemtics of Myoelectric Signals", IEEE Trans. Biomed. Eng., Vol. BME-26, No. 6, pp. 313-325, 1979. https://doi.org/10.1109/TBME.1979.326534
  2. K. Roeleveld, D. F. Stegeman, H. M. Vingerhoets and A. Van Oosterom, "The Motor Unit Potential Distribution Over the Skin Surface and Its Use in Estimating the Motor Unit Location", Acta Physiologica Scandinavica Symposium, Vol. 161, pp. 465-472, 1997.
  3. J. Akazawa, T. Sato, K. Minato and M. Yoshida, "Experimental and Analytical Investigations of Motor Unit Location for the Precise Estimation of Muscle Force with Surface Electromyograms", Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 5816-5819, 2005.
  4. J. Duchene and J. Y. Hogrel, "A Model of EMG Generation", IEEE Trans. on Biomed. Eng., vol 47, No. 2, pp. 192-201, 2000. https://doi.org/10.1109/10.821754
  5. B. Hammarberg and E. Stalberg, "Novel Ideasfor Fast Muscle Action Potential Simulations Using the Line Source Model", IEEE Trans. on Biomed Eng., vol. 51, No. 11, 2004.
  6. M. M. Lowery, C. L. Vaughan, P. J. Nolan and M. J. O'Malley, "Spectral Compression of the Electromyographic Signal due to Decreasing Muscle Fiber Conduction Velocity", IEEE Trans. on Rehabilitation Eng, Vol. 8, No. 3, September 2000.
  7. K. Roeleveld, J. H. Blok, D. F. Stegeman and A. van Oosterom, "Volume Conduction Models for Surface EMG; Confrontation with Measurements", J. Electromyogr. Kinesiol. Vol. 7, No. 4, pp. 221-232, 1997. https://doi.org/10.1016/S1050-6411(97)00009-6
  8. S. Andreassen and A. Rosenfalck, "Relationship of Intracellular and Extracellular Action Potential of Skeletal Muscle Fiber", CRC Crit. Rev. Bioeng., vol. 13, pp. 267-306, 1981.
  9. D. Farina and R. Merletti, "An experiment and model based investigation of the potential and limitations of surface EMG spectral analysis for assessment of motor unit recruitment strategy", IEEE, Proceedings of the 23rd Annual International Conference, Vol. 2, pp. 1209-1212, 2001.
  10. S. D. Nandedkar and E. Stalberg, "Simulation of single fiber action potentials", Med. Biol. Eng. Comput., vol. 21, pp. 158-165, 1983. https://doi.org/10.1007/BF02441531
  11. J. H. Blok, D. F. Stegeman and A. Van Oosterom, "Three-Layer Volume Conductor Model and Software Package for Applications in Surface Electromyography", Annals of Biomedical Engineering, Vol. 30, pp. 566-577, 2002. https://doi.org/10.1114/1.1475345
  12. D. W. Stashuk, "Simulation of electgromyographic signal", J. Electromyogra. Kinesiol., vol. 3, pp. 157-173, 1993. https://doi.org/10.1016/S1050-6411(05)80003-3
  13. C. Disselhorst-Klug, J. Silny and G. Rau, "Estimation of the relationship between the noninvasively detected activity of single motor units and their characteristic pathological changes by modelling", Journal of Electromyography and Kinesiology 8 pp. 323-335, 1998. https://doi.org/10.1016/S1050-6411(98)00015-7
  14. P. Zhou, W. Z. Rymer, N. Suresh and L. Zhang, "A Study of Surface Motor Unit Action Potentials in First dorsal Interosseus (FDI) Muscle", IEEE EMBS conference, pp. 1074-1077, 2001.
  15. A. Aggarwal and G. Nicholson, "Detection of pre- clinical motor neurone loss in SOD1 mutation carriers using motor unit number estimation", J. Neurol. Neurosurg. Psychiatry 73; pp. 199-201, 2002. https://doi.org/10.1136/jnnp.73.2.199
  16. J. McComas, "Motor unit Populations in Healthy and Diseased Muscles", Physical therapy., vol 73, pp. 868-877, 1993. https://doi.org/10.1093/ptj/73.12.868
  17. T. J. Doherty, W. F. Brown, "The estimated numbers and relative sizes of thenar motor unit as selected by multiple point stimulation in young and older adults", Muscle Nerve 16, pp. 355-66, 1993. https://doi.org/10.1002/mus.880160404
  18. S. Kazuhiko and N. Mitsuo, "Relation Between the Size of Motor Units and the Spectral Characteristics of their Action Potentials", Electroencephalography and clinical Neurophysiology 109 pp. 436-443, 1998. https://doi.org/10.1016/S0924-980X(98)00047-2
  19. D. Nandedka, S. Nandedka, E. Barkhaus and V. Stalberg, "Motor Unit Number Index (MUNIX)", IEEE Trans. on Biomed. Eng., vol 51, No. 51, pp. 2209-2211, 2004. https://doi.org/10.1109/TBME.2004.834281
  20. L. A. Major and K. E. Jones, "Simulations of Motor Unit Number Estimation Techniques", Journal of Neural Engineering, vol 2, pp. 17-34, 2005. https://doi.org/10.1088/1741-2560/2/2/003
  21. D. Farina, M. Fosci and R. Merletti, "Motor Unit Recruitment Strategies Investigated by Surface EMG Variables", J Appl Physiol, 92, pp. 235-247, 2002. https://doi.org/10.1063/1.1481974
  22. D. J. Roberson and W. Z. Rymer, "Decomposition of Low Force, Simulated EMG Using Wavelets", IEEE BMES/EMBS conference, p. 576, 1999.
  23. M. Calder, A. Hall, M. Lester, J. G. Inglis and A. Gabrial, "Reliability of the biceps brachill M-wave", Journal of Neural Engineering and Rehabilitation., vol 2, pp. 1-8, 2005.
  24. E. Stalberg and J. V. Trontelj, "Single Fiber Electromyography", Old Woking (UK), The Mirvalle Press, 1979.