최선 릴레이 선택을 적용한 OFDM 기반 이중-홉 다중 릴레이 시스템의 아웃티지 성능 분석

Outage Analysis of OFDM-Based Dual-hop Multi-Relay Systems with Best Relay Selection

  • 박재철 (경희대학교 전자전파공학과) ;
  • 왕진수 (경희대학교 전자전파공학과) ;
  • 이지혜 (경희대학교 전자전파공학과) ;
  • 김윤희 (경희대학교 전자전파공학과)
  • 투고 : 2010.01.14
  • 심사 : 2010.03.19
  • 발행 : 2010.05.31

초록

본 논문은 OFDM (orthogonal frequency division multiplexing) 기반 이중-홉 다중 릴레이 시스템에서 상호정보를 최대로 하는 릴레이 선택 기법을 고려한다. 상기 시스템에서 DF (decode-and-forward) 릴레이를 적용할 때와 AF (amplify-and-forward) 릴레이를 적용할 때에 대해 각각 시스템 아웃티지 확률에 대한 하한과 제공 가능한 최대 다양성 차수를 유도하고 모의실험으로 아웃티지 용량을 제공한다. 성능 평가 결과 DF와 AF 방식 모두 아웃티지 확률 하한과 동일한 다양성 차수를 제공하지만, DF가 AF보다 아웃티지 확률 하한에 더 가깝고 더 큰 아웃티지 용량을 제공함을 볼 수 있다. 또한, 플랫 페이딩과 달리 주파수 선택성 채널에서는 다중 경로 수가 증가하거나 릴레이 선택의 후보 릴레이 수가 증가할수록 AF에 대한 DF 방식의 성능 이득이 더욱 커짐을 볼 수 있다. 따라서, OFDM 기반 다중 릴레이 시스템에서는 성능 면에서 AF 릴레이보다는 DF 릴레이가 유리함을 알 수 있다.

This paper presents an OFDM-based dual-hop multi-relay system with best relay selection maximizing the mutual information. For the system either with decode-and-forward (DF) relays or with amplify-and-forward (AF) relays, we derive a lower-bound on the outage probability and the diversity order achievable in frequency selective fading channels and provide the outage capacity from simulation. Performance evaluation shows that both DF and AF provide the same diversity order as in the lower-bound but DF of which the outage probability is much closer to the lower-bound provides a better outage capacity than AF. It is also observed that the SNR gain of DF over AF gets larger as either the number of resolvable multipaths or the number of relay candidates increases, which makes DF relaying more favorable to the OFDM-based multi-relay system.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. R. Pabst, et al., "Relay-based deployment concepts for wireless and mobile broadband radio," IEEE Commun. Mag., Vol. 42, No. 9, pp. 80-89, Sept. 2004. https://doi.org/10.1109/MCOM.2004.1336724
  2. D. Soldani and S. Dixit, "Wireless relays for broadband access," IEEE Commun. Mag., Vol. 46 No. 3, pp. 58-66, Mar. 2008.
  3. J. N. Laneman and G. W. Wornell, "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. Inform. Theory, Vol. 49, No. 10, pp. 2415-2425, Oct. 2003. https://doi.org/10.1109/TIT.2003.817829
  4. J. N. Laneman, D. N. C. Tse, and G.W. Wornell, "Cooperative diversity in wireless networks: efficient protocols and outage behavior," IEEE Trans. Inform. Theory, Vol. 50, No. 12, pp. 3062-3080, Dec. 2004. https://doi.org/10.1109/TIT.2004.838089
  5. A. Beltas, A. Khisti, D. P. Reed, and A. Lippman, "A simple cooperative diversity method based on network path selection," IEEE J. Sel. Areas Commun., Vol. 24, No. 3, pp. 659-672, Mar. 2006.
  6. Y. Jing and H. Jafarkhani, "Network beamforming using relays with perfect channel information," IEEE Trans. Inform. Theory, Vol. 55, No. 6, pp. 2499-2517, June 2009.
  7. S. Berger, M. Kuhn, and A. Wittneben, "Recent advances in amplify-and-forward two-hop relaying," IEEE Commun. Mag., Vol. 47, No. 7, pp. 50-56, July 2009.
  8. M. Mheida, M. Uysal, and N. Al-Dhahir, "Equalization techniques for distributed space-time block codes with amplify-andforward relaying," IEEE Trans. Signal Process., Vol. 55, No. 5, pp. 1839-1852, May 2007.
  9. I. Hammerström and A. Wittneben, "Power allocation schemes for amplify-andforward MIMO-OFDM relay links," IEEE Wireless Commun., Vol. 11, No. 9, pp. 2798-2802, Aug. 2007.
  10. H. A. Suraweera and J. Armstrong, "Performance of OFDM-based dual-hop amplifyand- forward relaying," IEEE Commun. Lett., Vol. 11, No. 9, pp. 726-728, Sept. 2007. https://doi.org/10.1109/LCOMM.2007.070639
  11. M. Kaneko, K. Hayashi, P. Popovski, K. Ikeda, H. Sakai, and R. Prasad, "Amplifyand- forward cooperative diversity schemes for multi-carrier systems," IEEE Trans. Wireless Commun., Vol. 7, No. 5, pp. 1845-1850, May 2008. https://doi.org/10.1109/TWC.2008.070660
  12. Y. Ding and M. Uysal, "Amplify-andforward cooperative OFDM with multiplerelays: performance analysis and relay selection methods," IEEE Trans. Wireless Commun., Vol. 8, No. 10, pp. 4963-4968, Oct. 2009. https://doi.org/10.1109/TWC.2009.081642
  13. M. R. McKay, R. J. Smith, H. A. Suraweera, and I. B. Collings, "On the mutual information distribution of OFDMbased spatial multiplexing: exact variance and outage approximation," IEEE Trans. Inform. Theory, Vol. 54, No. 7, pp. 3260-3278, July 2008. https://doi.org/10.1109/TIT.2008.924685
  14. A. M. Mathai, "Storage capacity of a dam with gamma type inputs," Annal Inst. Statist. Math. (Part A), Vol. 34, pp. 591-597, 1982. https://doi.org/10.1007/BF02481056
  15. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Ed., Academic, Burlington, MA, 2007
  16. Recommendation ITU-R M.1225, "Guidelines for evaluation of radio transmission technologies for IMT-2000," 1997.