Nakagami-m 페이딩 채널에서 GCIODs로 얻은 STBCs의 에르고딕 용량에 대한 연구

On the Ergodic Capacity of STBCs from GCIODs over Nakagami-m Fading Channels

  • Lee, Hoo-Jin (Department of Information and Communications Engineering, Hansung University) ;
  • Chung, Young-Mo (Department of Information and Communications Engineering, Hansung University)
  • 투고 : 2010.01.07
  • 심사 : 2010.04.21
  • 발행 : 2010.05.31

초록

본 논문에서는 주파수 비선택성이고 준정적인 동일 분포 독립 Nakagami-m 페이딩 채널에서 GLCODs(Generalized Linear Complex Orthogonal Designs)와 GCIODs(Generalized Coordinate Interleaved Orthogonal Designs)로 얻은 STBCs(Space-Time Block Codes)의 에르고딕 용량을 Meijer의 G함수로 표현되는 닫힌꼴로 유도한다. 유도된 해석적 결과는 Monte-Carlo 모의실험 결과와 매우 잘 일치함을 보였다. 그러므로 대규모 Monte-Carlo 모의실험 없이 다양한 안테나 구성과 상이한 채널환경에서 GLCODs와 GCIODs로 얻은 STBCs의 에르고딕 용량 성능을 분석하고 예측하는 유용한 기법이 제안되었다고 할 수 있다. 마지막에는 유도된 식의 정확도를 입증하는 수치적인 결과들을 제시한다.

In this paper, we derive exact closed-form formulas, in terms of Meijer's G-function, for the ergodic capacity of space-time block codes (STBCs) from generalized linear complex orthogonal designs (GLCODs) and generalized coordinate interleaved orthogonal designs (GCIODs) in quasi-static frequency-nonselective i.i.d. Nakagami-m fading channels. The derived analytical results show an excellent agreement with Monte-Carlo simulation results. Thus, a useful means for analyzing and predicting the ergodic capacity performance of STBCs from GLCODs or GCIODs can be provided in various antenna configurations and different channel conditions without extensive Monte-Carlo simulations. We present some numerical results to verify the accuracy of the derived formulas.

키워드

참고문헌

  1. S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Select. Areas Commun., Vol.16, No.8, pp.1451-1458, Oct., 1998. https://doi.org/10.1109/49.730453
  2. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block code from orthogonal designs," IEEE Trans. Inform. Theory, Vol.45, No.5, pp.1456-1467, July, 1999. https://doi.org/10.1109/18.771146
  3. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block coding for wireless communications: Performance results," IEEE J. Select. Areas Commun., Vol.17, No.3, pp.451-460, Mar., 1999. https://doi.org/10.1109/49.753730
  4. G. Ganesan and P. Stoica, "Space-time block codes: A maximum SNR approach," IEEE Trans. Inform. Theory, Vol.47, No.4, pp.1650-1656, May, 2001. https://doi.org/10.1109/18.923754
  5. M. Z. A. Khan and B. S. Rajan, "Single-symbol maximum likelihood decodable linear STBCs," IEEE Trans. Inform. Theory, Vol.52, No.5, pp.2062-2091, May, 2006. https://doi.org/10.1109/TIT.2006.872970
  6. C. Yuen, Y. L. Guan, and T. T. Tjhung, "Quasi-orthogonal STBC with minimum decoding complexity," IEEE Trans. Wireless Commun., Vol.4, No.5, pp.2089-2094, Sept., 2005.
  7. A. Maaref and S. Aissa, "Performance analysis of orthogonal space-time block codes in spatially correlated MIMO Nakagami fading channels," IEEE Trans. Wireless Commun., Vol.5, No.4, pp.807-817, Apr., 2006. https://doi.org/10.1109/TWC.2006.1618930
  8. H. Zhang and T. A. Gulliver, "Capacity and error probability analysis for orthogonal space-time block codes over fading channels," IEEE Trans. Wireless Commun., Vol.42, No.2, pp.808-819, Mar., 2005.
  9. L. Musavian, M. Dohler, M. R. Nakhai, and A. H. Aghvami, "Closed-form capacity expression of orthogonalized correlated MIMO channels," IEEE Commun. Lett., Vol.8, No.6, pp.365-367, June, 2004. https://doi.org/10.1109/LCOMM.2004.827430
  10. D. N. Dao and C. Tellambura, "On space-time block codes from coordinate interleaved orthogonal designs," in Proc. IEEE MILCOM 2006, Washington, D.C., Oct., 2006, pp.1-5.
  11. H. Lee, J. G. Andrews, and E. J. Powers, "Information outage probability and diversity order of symmetric coordinate interleaved orthogonal designs," IEEE Trans. Wireless Commun., Vol.7, No.5, pp.1501-1506, May, 2008. https://doi.org/10.1109/TWC.2008.061057
  12. H. Lee, J. G. Andrews, R. W. Heath, Jr., and E. J. Powers, "The performance of space-time block codes from coordinate interleaved orthogonal designs over Nakagami-m fading channels," IEEE Trans. Commun., Vol.57, No.3, pp.653-664, Mar., 2009. https://doi.org/10.1109/TCOMM.2009.03.060716
  13. H. Lee, "Wireless Systems Incorporating Full-Diversity Single-Symbol Decodable Space-Time Block Codes: Performance Evaluations and Developments," Ph.D. dissertation, The University of Texas at Austin, TX, USA, 2007.
  14. M. K. Simon and M.-S. Alouini, Digital Communication Over Fading Channels. New York, NY: Wiley, 2002.
  15. N. C. Sagias, G. S. Tombas, and G. K. Karagiannidis, "New results for the Shannon channel capacity in generalized fading channels," IEEE Commun. Lett., Vol.9, No.2, pp.97-99, Feb., 2005. https://doi.org/10.1109/LCOMM.2005.02031
  16. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic, 1994.
  17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.
  18. D. N. Dao and C. Tellambura, "On decoding, mutual information, and antenna selection diversity for quasi-orthogonal STBC with minimum decoding complexity," in Proc. IEEE GLOBECOM 2006, San Francisco, CA, Nov., 2006, pp.1-5.
  19. Wolfram, The Wolfram functions site, "Meijer G-function, specialized values, case {m,n,p,q}={1,0,0,1}," 2007. [Online]. Available: http://functions.wolfram.com/07.34.03.0228.01/
  20. Wolfram, The Wolfram functions site, "Meijer G-function, specialized values, case {m,n,p,q}={1,2,2,2}," 2007. [Online]. Available: http://functions.wolfram.com/07.34.03.0456.01/
  21. Wolfram, The Wolfram functions site, "Meijer G-function, classical Meijer's integral from two G-functions" 2007. [Online]. Available: http://functions.wolfram.com/07.34.21.0011.01/