DOI QR코드

DOI QR Code

Estimation of Cooldown Time in Cryocooled Superconducting Magnet System

  • Received : 2010.03.04
  • Accepted : 2010.04.26
  • Published : 2010.05.31

Abstract

A cooldown time is one of the major factors in many cryocooler applications, especially for the design of conduction-cooled superconducting apparatus. The estimation of cooldown seeks the elapsed time to cool thermal object by a cryocooler during initial cooldown process. This procedure includes the dimension of cold mass, heat transfer analysis for cryogenic load and available refrigerating capacity of a cryocooler. This method is applied to the specific cooling system for a 3 Tesla superconducting magnet cooled by a two-stage GM cryocooler. The result is compared with that of experiment, showing that the results of proposed method have a good agreement with experiments during initial cooling of superconducting magnet.

Keywords

References

  1. A. C. Rose-innes and E. H. Rhoderick, Introduction to Superconductivity, Pergamon Press, 1978.
  2. S. W. Van Sciver, Helium Cryogenics, Plenum Press, 1986.
  3. Y. S. Choi, D. L. Kim, B. S. Lee, H. S. Yang and T. A. Painter, "Conduction-cooled superconducting magnet for material control application," IEEE Trans. App. Supercond., vol. 19, pp. 2190-2193, 2009. https://doi.org/10.1109/TASC.2009.2019137
  4. S. Katano, N. Minakawa, T. Hasebe and J. Sakuraba, "New cryocooler-cooled superconducting magnet: a 13.5 T high-field split-pair coil magnet for neutron scattering," Physica B, vol. 385-386, pp. 1300-1302, 2006. https://doi.org/10.1016/j.physb.2006.06.107
  5. K. Watanabe and K. Takahashi, " Cryogen-free hybrid magnet for magnetic levitation," Physica C, vol. 386, pp. 485-489, 2003. https://doi.org/10.1016/S0921-4534(02)02232-3
  6. H. Morita, M. Okada, K. Tanaka, J. Sato, H. Kitaguchi, H. Kumakura, K. Togano, K. Itoh and H. Wada, "10 T conduction-cooled Bi-2212/Ag HTS solenoid magnet system," IEEE Trans. App. Supercond., vol. 11, pp. 2523-2526, 2001. https://doi.org/10.1109/77.920379
  7. N. J. Simon, E. S. Drexler and R. P. Reed, "Properties of copper and copper alloys at cryogenic temperature," National Institute of Standard and Technology, Washington D.C., pp. 7-16, 1992.
  8. CRYOCOMP, version 3.06, a program distributed by Cryodata, Inc. Louisville, CO.
  9. Cryogenic Material Properties, NIST, [Online] Available: http://www.cryogenics.nist.gov/
  10. Sumitomo Product Documentation, Sumitomo (SHI) Inc., Allentown, PA, [Online] Available: http://www.shicryogenics.com
  11. K. Watanabe, S. Awaji, J. Sakuraba, K. Watazawa, T. Hasebe, K. Jikihara, Y. Yamada and M. Ishihara, "11T liquid helium-free superconducting magnet," Cryogenics, vol. 36, pp. 1019-1025, 1996. https://doi.org/10.1016/S0011-2275(96)00091-4
  12. M. Urata, K. Koyanagi, T. Kuriyama, K. Yamamoto, S. Nakayama, T. Yazawa, S. Nomura, Y. Yamada, H. Nakagome, "A 10 T cryo-cooled superconducting magnet with 100 mm room temperature bore," Physica C, vol. 216, pp. 209-211, 1996. https://doi.org/10.1016/0921-4526(95)00473-4