A case study of the impact of inquiry-oriented instruction with guided reinvention on students' mathematical activities

안내된 재발명을 포함한 탐구-중심 수업이 학생들의 수학적 활동에 미치는 영향에 관한 사례연구

  • Kim, Ik-Pyo (Department of Mathematics Education, Daegu University)
  • Received : 2010.03.06
  • Accepted : 2010.05.07
  • Published : 2010.05.31

Abstract

Goos(2004) introduced educational researchers' demand for change on the way that mathematics is taught in schools and the series of curriculum documents produced by the National council of Teachers of Mathematics. The documents have placed emphasis on the processes of problem solving, reasoning, and communication. In Korea, the national curriculum documents have also placed increased emphasis on mathematical activities such as reasoning and communication(1997, 2007).The purpose of this study is to analyze the impact of inquiry-oriented instruction with guided reinvention on students' mathematical activities containing communication and reasoning for science high school students. In this paper, we introduce an inquiry-oriented instruction containing Polya's plausible reasoning, Freudenthal's guided reinvention, Forman's sociocultural approach of learning, and Vygotsky's zone of proximal development. We analyze the impact of mathematical findings from inquiry-oriented instruction on students' mathematical activities containing communication and reasoning.

Keywords

References

  1. 교육인적자원부 (1997). 제7차 수학과 교육과정, 서울: 대한교과서.
  2. 교육인적자원부 (2007) (http:/www.moe.go.kr). 개정 수학과 교육과정.
  3. 김익표 (2008). 탐구-중심 수학 수업에서 교사의 역할에 관한 사례연구: 과학고등학교 학생들을 중심으로, 한국학교수학회논문집 11(2), pp.177-199.
  4. 김익표․황석근 (2004). 파스칼의 삼각형, 계차수열 및 행렬의 연계와 표현, 한국수학교육학회 시리즈 A <수학교육> 43(4), pp.391-398.
  5. 송상헌 (1998). 수학 영재성 측정과 판별에 관한 연구. 서울대학교 대학원 박사학위 논문.
  6. 이종희․김선희 (2002). 학교 현장에서 수학적 추론에 대한 실태 조사-수학적 추론 유형 중심으로-, 한국수학 교육학회 시리즈 A <수학교육> 41(3), pp.273-289.
  7. 황석근․이재돈․김익표 (2001). ENV 이산수학. 서울: 블랙박스.
  8. Anton, H. (2005). Elementary Linear Algebra 9th ed. New Jersey: John Wiley & Sons.
  9. Brualdi, R. A. (2004). Introductory Combinatorics 4th ed. New Jersey: Prentice Hall, Inc.
  10. Cheon, G.-S., & El-Mikkawy, M. (2004). Extended symmetric Pascal matrices via hypergeometric functions, Appl. Math. Comput. 158, pp.159-168. https://doi.org/10.1016/j.amc.2003.08.095
  11. Edelman, A., & Strang, G. (2004). Pascal Matrices, American Mathematical Monthly 111(3), pp.189-197. https://doi.org/10.2307/4145127
  12. Elbers, E. (2003). Classroom interaction as reflection: Learning and Teaching Mathematics in a Community of Inquiry, Educational Studies in Mathematics 54, pp.77-99. https://doi.org/10.1023/B:EDUC.0000005211.95182.90
  13. Freudenthal, H. (1991). Revisiting Mathematics Education. Kluwer: Dordrecht.
  14. Forman, E. A. (2003). A sociocultural approach to mathematics reform: Speaking, inscribing, and doing mathematics within communities of practice. In J . Kilpatrick, W. G. Martin & D. Schifter (Eds.), A research companion to Principles and Standards for School Mathematics(pp.332-352). Reston, VA: National council of Teachers of Mathematics.
  15. Forman, E. A., & McPhail, J. (1993). Vygotskian perspective on children's collaborative problemsolving activities. In E. A. Forman, N. Minick, & C. A. Stone(Eds.), Context for learning: Sociocultural dynamics in children's development (pp.213-229). New York: Oxford University Press.
  16. Goos, M. (2004). Learning Mathematics in a Classroom Community of Inquiry, Journal for Research in Mathematics Education 35(4), pp.258-291. https://doi.org/10.2307/30034810
  17. Healy, C. C. (1993). Creating miracles: A story of student discovery. Berkeley, CA: Key Curriculum Press.
  18. Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.
  19. Leder, G. (1990). Talking about mathematics, Australian Educational Researcher 17(2), pp.17-27. https://doi.org/10.1007/BF03219470
  20. Lerman, S. (2001). Cultural, discursive psychology: A sociocultural approach to studying the teaching and learning of mathematics, Educational Studies in Mathematics 46, pp.87-113. https://doi.org/10.1023/A:1014031004832
  21. Lesh, R. (1981). Applied mathematical problem solving, Educational Studies in mathematics 12(2), pp.235-264. https://doi.org/10.1007/BF00305624
  22. National Research Council (1996). National science education standards. Washington, DC: National Academy Press.
  23. NCTM (1989). Curriculum and Evaluation Standards For School Mathematics. Reston, VA: Author.
  24. NCTM (2000). Principles and Standards For School Mathematics. Reston, VA: Author.
  25. Polya, G. (1954). Mathematics and plausible reasoning: Induction and analogy in Mathematics. Princeton, NJ: Princeton University Press.
  26. Polya, G. (1957). How to solve it. Princeton, NJ: Princeton University Press.
  27. Rowe, M. B. (1973). Teaching Science as Continuous Inquiry. New York: McGraw-Hill.
  28. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
  29. Silver, E. A. (1993). On mathematical problem posing. In I. Hirabayashi; N. Nohda; K. Shigematsu; F.-L. Lin (Eds.), Proceedings of the 17th PME Conference Vol. I (pp.66-85). University of Tsukuba, Tsukuba.
  30. Silver, E. A. (1994). On mathematical problem posing, For the learning of mathematics, 14(1), pp 19-28.
  31. Silver, E. A., & Adams, V. M. (1990). Using open-ended problems, Arithmetic Teachers 34(9), pp.34-35.
  32. Skinner, P. (1991). What's your problem? Posing and solving mathematical problems, K-2. Portsmouth, NH: Heinemann.
  33. Streefland, L. (1987). Free production of fraction monographs-In: J. C. Bergeron; N. Herscovics; C. Kieran (Eds.), Proceedings of the Eleventh Annual Meeting of the International Group for the Psychology of Mathematics Education, Volume I (pp.405-410). Montreal: Canada.
  34. Streefland, L. (1991). Fractions in realistic mathematics education. Dordrecht, Netherlands: Kluwer.
  35. Van den Brink, J. F. (1987). Children as arithmetic book authors, For the learning of mathematics 7(2), pp.44-48.
  36. Van Oers, B. (2001). Educational forms of initiation in mathematical culture, Educational Studies in Mathematics 46, pp.59-85. https://doi.org/10.1023/A:1014031507535
  37. Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.
  38. Wubbels, T., Korthagen, F., & Broekman, H. (1997). Preparing teachers for realistic mathematics education, Educational Studies in Mathematics 32(1), pp.1-28. https://doi.org/10.1023/A:1002900522457