J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 17, Number 2 (May 2010), Pages 167-173

MINIMAL BASICALLY DISCONNECTED COVER OF WEAKLY
P-SPACES AND THEIR PRODUCTS

CHANGIL KiMm

ABSTRACT. In this paper, we introduce the concept of a weakly P-space which is a
generalization of a P-space and prove that for any covering map f: X — Y, X is
a weakly P-space if and only if Y is a weakly P-space. Using these, we investigate
the minimal basically disconnected cover of weakly P-spaces and their products.

1. INTRODUCTION

All spaces in this paper are Tychonoff spaces and for any space X, X denotes
the Stone-Cech compactification of X.

In [7], Vermeer showed that every Tychonoff space X has the minimal basically
disconnected cover (AX, Ax) and that for any compact space X, AX is given by the
Stone space S(0Z(X)#) of a Boolean algebra ¢Z(X)#. In [1], Comfort, Hindman,
and Negrepontis showed that if X is a P-space and Y is a countably locally weakly
Lindelof space, then X x Y is a basically disconnected space.

In this paper, we first introduce the concept of weakly P-spaces and show that for
any covering map f : X — Y, X is a weakly P-space if and only if Y is a weakly P-
space. Using this, we will show that if X is a weakly P-space, then AX is a P-space.
For any space X, let Sx denote the subspace {a|a is a fixed ¢ Z(X)#-ultrafilter } of
A(BX) ([3]). For any spaces X,Y such that AX = Sx and AY = Sy, we will show
that there is a homeomorphism A : Sx X Sy — Sxxy such that Ax x Ay =goh,
where the map ¢ : Sxxy — X X Y is defined by ¢(d) = Né and that the following
are equivalent :

(1) A X x AY = A(X xY),

(2) Sxxy = A(X xY), and
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(3) AX x AY is a basically disconnected space.

For the terminology, we refer to [2] and [5].

2. MINIMAL BASICALLY DISCONNECTED COVER OF WEAKLY P-SPACES

For any space X, the set R(X) of all regular closed sets in X, when partially
ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet
and complementation operations are defined as follows :

\/{AZ’Z € I} = Clx(intx(U{Ai‘i S I})),

N{A;li € I} = clx(N{A;]i € I}) and

A =clx(X — A)
and a sublattice of R(X) is a subset of R(X) that contains (), X and is closed under
finite joins and meets.

We recall that a space X is called a P-space if every zero-set in X is open in X
and that X is called an almost P-space if the empty set is the only zero-set Z in X
with intx(Z) = (. Similarly, for the set RO(X) of all regular open sets in X, we
can define a complete Boolean algebra (RO(X), Q).

Lemma 2.1 ([6]). Let X be a compact space. Then X is an almost P-space if and
only if for any increasing sequence (Uy) in RO(X), | J{Un|ln € N} € RO(X).

Note that A is a regular closed set in a space X if and only if X — A is a regular

open set in X. Using this, we have the following :

Corollary 2.2. A compact space X is an almost P-space if and only if for any
decreasing sequence (Up) in R(X), ({{Unln € N} € R(X).

We introduce the concept of another generalization of P-spaces.

Definition 2.3. A space X is called a weakly P-space if for any decreasing sequence
(Un) in R(X), ({Un|n € N} € R(X).

Proposition 2.4. Let X be a space. Then the following are equivalent :

(1) X is a weakly P-space,
(2) for any decreasing sequence (Uy) in R(X),
N{Unln € N}={U,|n € N}, and
(3) for any decreasing sequence (Uy,) in R(X) with A{Up|n € N} =0, ({Unln €
N} =10
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Proof. (1) = (2) Let (U,) be a decreasing sequence in R(X). Then clearly, A{Up,|n €
N} C({Unln € N}. Since ({{Un|ln € N} € R(X), ({Unln € N} C A{Un|n € N}.

(2) = (3) It is trivial.

(3) = (1) Let (Uy) be a decreasing sequence in R(X). Clearly, A{U,|n € N} C
(V{Un|n € N}. Let x ¢ AN{Uyn|n € N}. Then there is a regular closed neighborhood
V of x in X such that V Nintx(({Un|n € N}) = and hence intx (({V AUp|n €
N}) = 0. Since (V AU,) is a decreasing sequence in R(X), ([{V AUyp|n € N} = (.
For any n € N,

V AU, = cx(intx (V) Nintx (Uy))
Dintx (V) Nelx(intx (Up))
= intx(V) N Un

Hence intx (V) N (({Unln € N}) = 0 and so x ¢ (\{Un|n € N}. Thus {Uy,|n €
N} C A{Up|n € N}. 0

Corollary 2.5. (1) If X is a weakly P-space, then X is an almost P-space.
(2) A locally compact space X is a weakly P-space if and only if X is an almost
P-space.

Recall that a space X is called a basically disconnected space if every cozero-set
in X is C*-embedded in X, equivalently, for any zero-set Z in X, intx(Z) is closed
in X.

Let X be a weakly P-space and Z a zero-set in X. Then there is a continuous map
f: X — R such that f~1(0) = Z, where R is the space with the usual topology.
For any n € N, let U, = clx (intx(f~*([0, 2]))). Then (U,) is a decreasing sequence
in R(X) such that Z = (\{Uy|n € N}. Since X is a weakly P-space, Z is a regular
closed set in X. Using this, we have the following :

Proposition 2.6. Fvery basically disconnected weakly P-space is a P-space.

Definition 2.7. Let X be a space. Then a pair (Y, f) is called a cover of X if
f:Y — X is a covering map, that is, an onto, continuous, closed and compact
map.

Suppose that f : X — Y is a covering map. Then the map f: R(X) — R(Y),
defined by f(A) = f(A), is a Boolean isomorphism ([5]).

Proposition 2.8. Let f: X — Y be a covering map. Then X is a weakly P-space
if and only if Y is a weakly P-space.
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Proof. (=) Let (U,) be a decreasing sequence in R(Y") such that A{U,|n € N} = 0.
Then (clx (intx(f~1(U,)))) is a decreasing sequence in R(X). Since X is a weakly
P-space, N{clx(intx(f~1(Un)))|n € N} = 0. Suppose that ({Un|n € N} # 0.
Pick y € ({{Un|n € N}. Since f~1(y) is a compact subset of X, there is a k € N
such that f=1(y) Nelx (intx(f~1(Ug))) = 0 and so y ¢ Uy. This is a contradiction.

(<) Let (H,,) be a decreasing sequence in R(X) with A{H,|n € N} = (. Then
(f(Hy)) is a decreasing sequence in R(Y") such that A{f(H,)|n € N} = (. Since Y’
is a weakly P-space, (\{f(Hp)|n € N} =0 and so ({{Hpln € N} =0. O

Definition 2.9. Let X be a space.
(1) A cover (Y, f) of X is called a basically disconnected cover of X if Y is a

basically disconnected space.

(2) A basically disconnected cover (Y, f) of X is called a minimal basically
disconnected cover of X if for any basically disconnected cover (Z,g) of X,
there is a covering map h: Z — Y such that foh =g.

Vermeer([7]) showed that every space X has a minimal basically disconnected
cover (AX,Ax).
By Proposition 2.6. and Proposition 2.8., we have the following :

Proposition 2.10. If X is a weakly P-space, then AX is a P-space.

3. PropucTts oF COVERS

A lattice L is called o-complete if every countable subset of L has join and meet.

Let L be a complete Boolean algebra and M a sublattice of L. Then there is the
smallest o-complete Boolean subalgebra of L containing M, denoted by o M. For any
space X, let Z(X) denote the set of all zero-sets and Z(X)# = {clx (intx(A))|A €
Z(X)}. Then Z(X)# is a sublattice of R(X) and so there a og-complete Boolean
subalgebra 0 Z(X)* of R(X) containing Z(X)#.

Let X be a space. A 0Z(X)#-filter a is said to be fized if N # (). Let Sx denote
the subspace {ala is a fixed 0 Z(X)#-ultrafilter} of S(cZ(X)#). Then {\s | A €
0Z(X)*} is a base for Sy and also a closed base for Sx, where Ay = {a € Sx|A €
at.

Recall that a space X is called weakly Lindeldf if for any open cover U of X, there
is a countable subset V of U such that | JV is dene in X and that a space X is called
locally weakly Lindelof if every element of X has a weakly Lindel6f neighborhood in
X.
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Definition 3.1. A space X is called a countably locally weakly Lindelof space if for
any countable set {U,|n € N} of open covers of X and for any x € X, there is a
neighborhood G of z in X such that for any n € N, there is a countable subset V,
of U, such that G C clx(UVy,).

Every locally weakly Lindelof space is a countably locally weakly Lindelof space

but the converse need not be true ([1]).

Lemma 3.2 ([3,4,7]). Let X be a space.
(1) If X is a compact space, then S(cZ(X)#) = AX and Ax(a) = Na.
(2) A(BX) = S(@Z(X)#).
(3) If X is a countably locally weakly Lindeldf space, then AX = Sx and
Ax(a) =Na.
(4) Ag)l( (X) is a basically disconnected space if and only if AX = Sx.

Lemma 3.3 ([5]). Let f: X — Y be a continuous map and S a dense subspace of
X such that f|g: S — f(S5) is a perfect map. Then f(X —85) CY — f(95).

By the fact that for any space X, 0 Z(X)”, 0Z(X)# xY and o(Z(X)# xY) are

Boolean isomorphic, we have the following :

Proposition 3.4. Let X,Y be spaces. Then we have the following :
(1) 0Z(X)#* xY CoZ(X xY)#,
(2) 0 Z(X)# x 0o Z(Y)# C o Z(X x Y)#, and
(3) for any A € 0 Z(X)* and B € o Z(Y)* such that (Ax Y)A (B xY) = 0,
Aaxy NAaxy = 0.

Theorem 3.5. Let X,Y be spaces such that AX = Sx and AY = Sy. Then there
18 a homeomorphism h : Sx X Sy — Sxxy such that Ax x Ay = g o h, where the
map g : Sxxy — X XY is defined by g(d) = NJ.

Proof. Since Sxxy = Ag(l)(xy)

continuous map h : Sx X Sy — Sxxy such that Ax x Ay =goh.

(X xY) and Ax x Ay is a covering map, there is a

Suppose that (a1, as) # (71,72). We may assume that «; # 1. Then there
are A € a; and B € 7 such that AANB = (. Then (AxY)A(BxY) =10
and by Proposition 3.4., Aaxy N Agxy = 0. Note that h((ay,a2)) € Aaxy and
h((71,72)) € ABxy. Hence h is one-to-one.

We will show that the co-restriction h : Sx x Sy — h(Sx x Sy) of h with

respect to h(Sx x Sy) is a closed map. Since h is one-to-one and onto, {Ap x
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\o|P € oZ(X)#,Q € 0Z(Y)#} is a base for Sx x Sy and for P € ¢Z(X)#,Q €
o Z(Y)*, Ap x Aq is closed and open in Sx x Sy, it is enough to show that for
any P € oZ(X)¥,Q € aZ(Y)¥, h(Ap x Ag) is closed in h(Sx x Sy). Take any
CecoZ(X)*,DecoZ(Y)" andt € h(Sx x Sy)—h(Ac x Ap). Since h is one-to-one
and onto, there is a unique (o, 3) in Sx x Sy such that h((a, 3)) = t. Then («, 8) ¢
Ac X Ap and so there are G € a and H € 3 such that (A\g x Ag) N (A¢c X Ap) = 0.
Hence (G x H) A (C x D) = (). By Proposition 3.4., Agxg N Acxp = (. Since
E((a,ﬁ)) =1t € Agxyg and B(/\C X Ap) € Aoxp, t ¢ ClXXy(B(/\C X Ap)). Hence
h is a closed map. Thus h is a dense embedding. Since g : Sxxy — X x Y is a
covering map, by Lemma 3.3.,

9(Sxxy — h(Sx x Sy))

C X xY —g(h(Sx x Sy))

=X xY —(Ax x Ay)(Sx x Sy) = 0.
Hence h(Sx x Sy) = Sxxy and so h is a homeomorphism. O

Theorem 3.6. Let X, Y be spaces such that AX = Sx and AY = Sy. Then the
following are equivalent :

(1) A X x AY =A(X xY)

(2) Sxxy =A(X xY), and

(3) AX x AY is a basically disconnected space.
Proof. By the above theorem, (1) = (2) and (2) = (3) hold.

(3) = (1) Since AX x AY is a basically disconnected space, there is a covering
map f: AX x AY — A(X xY) such that Axxy o f =Ax X Ay.

We will show that f is one-to-one.

Suppose that (o, 3) # (7,0) in AX x AY. We may assume that o # . Then
thereis a A € o and B € « such that AAB = . Since AxY,BxY € 0Z(X xY)#
and (A(X xY),Axxy) is a minimal basically disconnected cover of X x Y,

0 = claxxr) (Axsy (intxxy (A x Y))) N elp(x vy (Axyy (intx <y (B x Y)))

= clA(XXy)(A;Xy(mtXXy((A N B) xY))).
Since

AXXy(f(AA X AY)) = (AX X Ay)()\A X AY) =AXxY
= Axxy (ca(xxy)(Ax ey (intxxy (A x Y))))

and Axxy is a covering map, f(Aa x AY) = clA(XXy)(A}le(intXXy(A xY))) and
similarly, f(Ap x AY) = clpxxy)(Axyy (intxxy (B x Y))). Hence f(Aq x AY) N
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f(AB x AY)) = 0. Since (o, 8) € Aa x AY and (v,0) € Ap x AY, f(«, 8) # f(7,9).

Hence f is one-to-one. Thus f is a homeomorphism. O

Corollary 3.7. (1) If X is a countably locally weakly Lindeldf, weakly P-space
and Y is a locally weakly Lindeldf, then AX x AY = A(X xY).
(2) If X XY is a countably locally weakly Lindeldf space, then AX x AY =
AX xY).
(3) If X and Y is a locally compact space, then AX x AY = A(X xY).

REFERENCES

1. W.W. Comfort, N. Hindman & S. Negrepontis: F’-space and their products with P-
spaces. Pacific J. Math. 28 (1969).

2. L. Gillman & M. Jerison: Rings of continuous functions. Van Nostrand, Princeton, New
York, 1960.

3. C.I. Kim: Minimal covers and filter spaces. Topol. and its Appl. 72 (1996), 31-37.

: Minimal basically disconnected covers of product spaces. Commum. Korean
Math. 21 (2006), 347-353.

5. S.J. Porter & R.G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer,
Berlin, 1988.

6. A.K. Veksler: P’-points, P’-sets, P’-spaces. Soviet. Math. Dokl. 4 (1973), 1443-1450.

7. J. Vermeer: The smallest basically disconnected preimage of a space. Topol. Appl. 17
(1984), 217-232.

DEPARTMENT OF MATHEMATICS EDUCATION, DANKOOK UNIVERSITY, 126, JUKJEON, YONGIN,
GYEONGGI 448-701, KOREA
Email address: kci206@hanmail .net



