MINIMAL BASICALLY DISCONNECTED COVER OF WEAKLY P-SPACES AND THEIR PRODUCTS

CHANGIL KIM

ABSTRACT. In this paper, we introduce the concept of a weakly P-space which is a generalization of a P-space and prove that for any covering map $f: X \longrightarrow Y$, X is a weakly P-space if and only if Y is a weakly P-space. Using these, we investigate the minimal basically disconnected cover of weakly P-spaces and their products.

1. Introduction

All spaces in this paper are Tychonoff spaces and for any space X, βX denotes the Stone-Čech compactification of X.

In [7], Vermeer showed that every Tychonoff space X has the minimal basically disconnected cover $(\Lambda X, \Lambda_X)$ and that for any compact space X, ΛX is given by the Stone space $S(\sigma Z(X)^{\#})$ of a Boolean algebra $\sigma Z(X)^{\#}$. In [1], Comfort, Hindman, and Negrepontis showed that if X is a P-space and Y is a countably locally weakly Lindelöf space, then $X \times Y$ is a basically disconnected space.

In this paper, we first introduce the concept of weakly P-spaces and show that for any covering map $f: X \longrightarrow Y$, X is a weakly P-space if and only if Y is a weakly P-space. Using this, we will show that if X is a weakly P-space, then ΛX is a P-space. For any space X, let S_X denote the subspace $\{\alpha | \alpha \text{ is a fixed } \sigma Z(X)^{\#}\text{-ultrafilter }\}$ of $\Lambda(\beta X)$ ([3]). For any spaces X, Y such that $\Lambda X = S_X$ and $\Lambda Y = S_Y$, we will show that there is a homeomorphism $h: S_X \times S_Y \longrightarrow S_{X \times Y}$ such that $\Lambda_X \times \Lambda_Y = g \circ h$, where the map $g: S_{X \times Y} \longrightarrow X \times Y$ is defined by $g(\delta) = \cap \delta$ and that the following are equivalent:

- (1) $\Lambda X \times \Lambda Y = \Lambda (X \times Y)$,
- (2) $S_{X\times Y} = \Lambda(X\times Y)$, and

Received by the editors December 17, 2009. Revised February 23, 2010. Accepted May 13, 2010. 2000 Mathematics Subject Classification. 54D80, 54G05, 54C10.

 $Key\ words\ and\ phrases.$ weakly P-space, basically disconnected space, covering map.

The present research was conducted by the research fund of Dankook University in 2009.

168 ChangIl Kim

(3) $\Lambda X \times \Lambda Y$ is a basically disconnected space. For the terminology, we refer to [2] and [5].

2. Minimal Basically Disconnected Cover of Weakly P-spaces

For any space X, the set R(X) of all regular closed sets in X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet and complementation operations are defined as follows:

$$\bigvee \{A_i | i \in I\} = cl_X(int_X(\bigcup \{A_i | i \in I\})),$$

$$\bigwedge \{A_i | i \in I\} = cl_X(\bigcap \{A_i | i \in I\}) \text{ and }$$

$$A' = cl_X(X - A)$$

and a sublattice of R(X) is a subset of R(X) that contains \emptyset , X and is closed under finite joins and meets.

We recall that a space X is called a P-space if every zero-set in X is open in X and that X is called an almost P-space if the empty set is the only zero-set Z in X with $int_X(Z) = \emptyset$. Similarly, for the set RO(X) of all regular open sets in X, we can define a complete Boolean algebra $(RO(X), \subseteq)$.

Lemma 2.1 ([6]). Let X be a compact space. Then X is an almost P-space if and only if for any increasing sequence (U_n) in RO(X), $\bigcup \{U_n | n \in N\} \in RO(X)$.

Note that A is a regular closed set in a space X if and only if X - A is a regular open set in X. Using this, we have the following:

Corollary 2.2. A compact space X is an almost P-space if and only if for any decreasing sequence (U_n) in R(X), $\bigcap \{U_n | n \in N\} \in R(X)$.

We introduce the concept of another generalization of P-spaces.

Definition 2.3. A space X is called a weakly P-space if for any decreasing sequence (U_n) in R(X), $\bigcap \{U_n | n \in N\} \in R(X)$.

Proposition 2.4. Let X be a space. Then the following are equivalent:

- (1) X is a weakly P-space,
- (2) for any decreasing sequence (U_n) in R(X), $\bigwedge \{U_n | n \in N\} = \bigcap \{U_n | n \in N\}$, and
- (3) for any decreasing sequence (U_n) in R(X) with $\bigwedge \{U_n | n \in N\} = \emptyset$, $\bigcap \{U_n | n \in N\} = \emptyset$

Proof. (1) \Rightarrow (2) Let (U_n) be a decreasing sequence in R(X). Then clearly, $\bigwedge \{U_n | n \in N\} \subseteq \bigcap \{U_n | n \in N\}$. Since $\bigcap \{U_n | n \in N\} \in R(X)$, $\bigcap \{U_n | n \in N\} \subseteq \bigwedge \{U_n | n \in N\}$. (2) \Rightarrow (3) It is trivial.

 $(3) \Rightarrow (1)$ Let (U_n) be a decreasing sequence in R(X). Clearly, $\bigwedge \{U_n | n \in N\} \subseteq \bigcap \{U_n | n \in N\}$. Let $x \notin \bigwedge \{U_n | n \in N\}$. Then there is a regular closed neighborhood V of x in X such that $V \cap int_X(\bigcap \{U_n | n \in N\}) = \emptyset$ and hence $int_X(\bigcap \{V \wedge U_n | n \in N\}) = \emptyset$. Since $(V \wedge U_n)$ is a decreasing sequence in R(X), $\bigcap \{V \wedge U_n | n \in N\} = \emptyset$. For any $n \in N$,

$$V \wedge U_n = cl_X(int_X(V) \cap int_X(U_n))$$
$$\supseteq int_X(V) \cap cl_X(int_X(U_n))$$
$$= int_X(V) \cap U_n.$$

Hence $int_X(V) \cap (\bigcap \{U_n | n \in N\}) = \emptyset$ and so $x \notin \bigcap \{U_n | n \in N\}$. Thus $\bigcap \{U_n | n \in N\} \subseteq \bigwedge \{U_n | n \in N\}$.

Corollary 2.5. (1) If X is a weakly P-space, then X is an almost P-space.

(2) A locally compact space X is a weakly P-space if and only if X is an almost P-space.

Recall that a space X is called a basically disconnected space if every cozero-set in X is C^* -embedded in X, equivalently, for any zero-set Z in X, $int_X(Z)$ is closed in X.

Let X be a weakly P-space and Z a zero-set in X. Then there is a continuous map $f: X \longrightarrow \mathbb{R}$ such that $f^{-1}(0) = Z$, where \mathbb{R} is the space with the usual topology. For any $n \in N$, let $U_n = cl_X(int_X(f^{-1}([0,\frac{1}{n}])))$. Then (U_n) is a decreasing sequence in R(X) such that $Z = \bigcap \{U_n | n \in N\}$. Since X is a weakly P-space, Z is a regular closed set in X. Using this, we have the following:

Proposition 2.6. Every basically disconnected weakly P-space is a P-space.

Definition 2.7. Let X be a space. Then a pair (Y, f) is called a cover of X if $f: Y \longrightarrow X$ is a covering map, that is, an onto, continuous, closed and compact map.

Suppose that $f: X \longrightarrow Y$ is a covering map. Then the map $\overline{f}: R(X) \longrightarrow R(Y)$, defined by $\overline{f}(A) = f(A)$, is a Boolean isomorphism ([5]).

Proposition 2.8. Let $f: X \longrightarrow Y$ be a covering map. Then X is a weakly P-space if and only if Y is a weakly P-space.

170 ChangIl Kim

Proof. (\Rightarrow) Let (U_n) be a decreasing sequence in R(Y) such that $\bigwedge\{U_n|n\in N\}=\emptyset$. Then $(cl_X(int_X(f^{-1}(U_n))))$ is a decreasing sequence in R(X). Since X is a weakly P-space, $\bigcap\{cl_X(int_X(f^{-1}(U_n)))|n\in N\}=\emptyset$. Suppose that $\bigcap\{U_n|n\in N\}\neq\emptyset$. Pick $y\in\bigcap\{U_n|n\in N\}$. Since $f^{-1}(y)$ is a compact subset of X, there is a $k\in N$ such that $f^{-1}(y)\cap cl_X(int_X(f^{-1}(U_k)))=\emptyset$ and so $y\notin U_k$. This is a contradiction.

 (\Leftarrow) Let (H_n) be a decreasing sequence in R(X) with $\bigwedge\{H_n|n\in N\}=\emptyset$. Then $(f(H_n))$ is a decreasing sequence in R(Y) such that $\bigwedge\{f(H_n)|n\in N\}=\emptyset$. Since Y is a weakly P-space, $\bigcap\{f(H_n)|n\in N\}=\emptyset$ and so $\bigcap\{H_n|n\in N\}=\emptyset$.

Definition 2.9. Let X be a space.

- (1) A cover (Y, f) of X is called a basically disconnected cover of X if Y is a basically disconnected space.
- (2) A basically disconnected cover (Y, f) of X is called a minimal basically disconnected cover of X if for any basically disconnected cover (Z, g) of X, there is a covering map $h: Z \longrightarrow Y$ such that $f \circ h = g$.

Vermeer([7]) showed that every space X has a minimal basically disconnected cover $(\Lambda X, \Lambda_X)$.

By Proposition 2.6. and Proposition 2.8., we have the following:

Proposition 2.10. If X is a weakly P-space, then ΛX is a P-space.

3. Products of Covers

A lattice L is called σ -complete if every countable subset of L has join and meet. Let L be a complete Boolean algebra and M a sublattice of L. Then there is the smallest σ -complete Boolean subalgebra of L containing M, denoted by σM . For any space X, let Z(X) denote the set of all zero-sets and $Z(X)^{\#} = \{cl_X(int_X(A))|A \in Z(X)\}$. Then $Z(X)^{\#}$ is a sublattice of R(X) and so there a σ -complete Boolean subalgebra $\sigma Z(X)^{\#}$ of R(X) containing $Z(X)^{\#}$.

Let X be a space. A $\sigma Z(X)^{\#}$ -filter α is said to be fixed if $\cap \alpha \neq \emptyset$. Let S_X denote the subspace $\{\alpha | \alpha \text{ is a fixed } \sigma Z(X)^{\#}$ -ultrafilter $\}$ of $S(\sigma Z(X)^{\#})$. Then $\{\lambda_A \mid A \in \sigma Z(X)^{\#}\}$ is a base for S_X and also a closed base for S_X , where $\lambda_A = \{\alpha \in S_X | A \in \alpha\}$.

Recall that a space X is called weakly Lindelöf if for any open cover \mathcal{U} of X, there is a countable subset \mathcal{V} of \mathcal{U} such that $\bigcup \mathcal{V}$ is dene in X and that a space X is called locally weakly Lindelöf if every element of X has a weakly Lindelöf neighborhood in X.

Definition 3.1. A space X is called a countably locally weakly Lindelöf space if for any countable set $\{U_n|n \in N\}$ of open covers of X and for any $x \in X$, there is a neighborhood G of x in X such that for any $n \in N$, there is a countable subset \mathcal{V}_n of \mathcal{U}_n such that $G \subseteq cl_X(\cup \mathcal{V}_n)$.

Every locally weakly Lindelöf space is a countably locally weakly Lindelöf space but the converse need not be true ([1]).

Lemma 3.2 ([3,4,7]). Let X be a space.

- (1) If X is a compact space, then $S(\sigma Z(X)^{\#}) = \Lambda X$ and $\Lambda_X(\alpha) = \cap \alpha$.
- (2) $\Lambda(\beta X) = S(\sigma Z(X)^{\#}).$
- (3) If X is a countably locally weakly Lindelöf space, then $\Lambda X = S_X$ and $\Lambda_X(\alpha) = \cap \alpha$.
- (4) $\Lambda_{\beta X}^{-1}(X)$ is a basically disconnected space if and only if $\Lambda X = S_X$.

Lemma 3.3 ([5]). Let $f: X \longrightarrow Y$ be a continuous map and S a dense subspace of X such that $f|_S: S \longrightarrow f(S)$ is a perfect map. Then $f(X - S) \subseteq Y - f(S)$.

By the fact that for any space X, $\sigma Z(X)^{\#}$, $\sigma Z(X)^{\#} \times Y$ and $\sigma(Z(X)^{\#} \times Y)$ are Boolean isomorphic, we have the following:

Proposition 3.4. Let X, Y be spaces. Then we have the following:

- (1) $\sigma Z(X)^{\#} \times Y \subseteq \sigma Z(X \times Y)^{\#}$,
- (2) $\sigma Z(X)^{\#} \times \sigma Z(Y)^{\#} \subseteq \sigma Z(X \times Y)^{\#}$, and
- (3) for any $A \in \sigma Z(X)^{\#}$ and $B \in \sigma Z(Y)^{\#}$ such that $(A \times Y) \wedge (B \times Y) = \emptyset$, $\lambda_{A \times Y} \cap \lambda_{A \times Y} = \emptyset$.

Theorem 3.5. Let X, Y be spaces such that $\Lambda X = S_X$ and $\Lambda Y = S_Y$. Then there is a homeomorphism $h: S_X \times S_Y \longrightarrow S_{X \times Y}$ such that $\Lambda_X \times \Lambda_Y = g \circ h$, where the map $g: S_{X \times Y} \longrightarrow X \times Y$ is defined by $g(\delta) = \cap \delta$.

Proof. Since $S_{X\times Y} = \Lambda_{\beta(X\times Y)}^{-1}(X\times Y)$ and $\Lambda_X \times \Lambda_Y$ is a covering map, there is a continuous map $h: S_X \times S_Y \longrightarrow S_{X\times Y}$ such that $\Lambda_X \times \Lambda_Y = g \circ h$.

Suppose that $(\alpha_1, \alpha_2) \neq (\gamma_1, \gamma_2)$. We may assume that $\alpha_1 \neq \gamma_1$. Then there are $A \in \alpha_1$ and $B \in \gamma_1$ such that $A \wedge B = \emptyset$. Then $(A \times Y) \wedge (B \times Y) = \emptyset$ and by Proposition 3.4., $\lambda_{A \times Y} \cap \lambda_{B \times Y} = \emptyset$. Note that $h((\alpha_1, \alpha_2)) \in \lambda_{A \times Y}$ and $h((\gamma_1, \gamma_2)) \in \lambda_{B \times Y}$. Hence h is one-to-one.

We will show that the co-restriction $\bar{h}: S_X \times S_Y \longrightarrow h(S_X \times S_Y)$ of h with respect to $h(S_X \times S_Y)$ is a closed map. Since \bar{h} is one-to-one and onto, $\{\lambda_P \times S_P\}$

172 CHANGIL KIM

 $\lambda_Q|P\in\sigma Z(X)^\#,Q\in\sigma Z(Y)^\#\}$ is a base for $S_X\times S_Y$ and for $P\in\sigma Z(X)^\#,Q\in\sigma Z(Y)^\#$, $\lambda_P\times\lambda_Q$ is closed and open in $S_X\times S_Y$, it is enough to show that for any $P\in\sigma Z(X)^\#,Q\in\sigma Z(Y)^\#$, $\bar{h}(\lambda_P\times\lambda_Q)$ is closed in $h(S_X\times S_Y)$. Take any $C\in\sigma Z(X)^\#,D\in\sigma Z(Y)^\#$ and $t\in h(S_X\times S_Y)-h(\lambda_C\times\lambda_D)$. Since \bar{h} is one-to-one and onto, there is a unique (α,β) in $S_X\times S_Y$ such that $\bar{h}((\alpha,\beta))=t$. Then $(\alpha,\beta)\notin\lambda_C\times\lambda_D$ and so there are $G\in\alpha$ and $H\in\beta$ such that $(\lambda_G\times\lambda_H)\cap(\lambda_C\times\lambda_D)=\emptyset$. Hence $(G\times H)\wedge(C\times D)=\emptyset$. By Proposition 3.4., $\lambda_{G\times H}\cap\lambda_{C\times D}=\emptyset$. Since $\bar{h}((\alpha,\beta))=t\in\lambda_{G\times H}$ and $\bar{h}(\lambda_C\times\lambda_D)\subseteq\lambda_{C\times D}$, $t\notin cl_{X\times Y}(\bar{h}(\lambda_C\times\lambda_D))$. Hence \bar{h} is a closed map. Thus \bar{h} is a dense embedding. Since $g:S_{X\times Y}\longrightarrow X\times Y$ is a covering map, by Lemma 3.3.,

$$g(S_{X\times Y} - h(S_X \times S_Y))$$

$$\subseteq X \times Y - g(h(S_X \times S_Y))$$

$$= X \times Y - (\Lambda_X \times \Lambda_Y)(S_X \times S_Y) = \emptyset.$$

Hence $h(S_X \times S_Y) = S_{X \times Y}$ and so h is a homeomorphism.

Theorem 3.6. Let X, Y be spaces such that $\Lambda X = S_X$ and $\Lambda Y = S_Y$. Then the following are equivalent:

- (1) $\Lambda X \times \Lambda Y = \Lambda (X \times Y)$
- (2) $S_{X\times Y} = \Lambda(X\times Y)$, and
- (3) $\Lambda X \times \Lambda Y$ is a basically disconnected space.

Proof. By the above theorem, $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ hold.

(3) \Rightarrow (1) Since $\Lambda X \times \Lambda Y$ is a basically disconnected space, there is a covering map $f: \Lambda X \times \Lambda Y \longrightarrow \Lambda (X \times Y)$ such that $\Lambda_{X \times Y} \circ f = \Lambda_X \times \Lambda_Y$.

We will show that f is one-to-one.

Suppose that $(\alpha, \beta) \neq (\gamma, \delta)$ in $\Lambda X \times \Lambda Y$. We may assume that $\alpha \neq \gamma$. Then there is a $A \in \alpha$ and $B \in \gamma$ such that $A \wedge B = \emptyset$. Since $A \times Y$, $B \times Y \in \sigma Z(X \times Y)^{\#}$ and $(\Lambda(X \times Y), \Lambda_{X \times Y})$ is a minimal basically disconnected cover of $X \times Y$,

$$\emptyset = cl_{\Lambda(X\times Y)}(\Lambda_{X\times Y}^{-1}(int_{X\times Y}(A\times Y))) \cap cl_{\Lambda(X\times Y)}(\Lambda_{X\times Y}^{-1}(int_{X\times Y}(B\times Y)))$$

= $cl_{\Lambda(X\times Y)}(\Lambda_{X\times Y}^{-1}(int_{X\times Y}((A\cap B)\times Y))).$

Since

$$\Lambda_{X\times Y}(f(\lambda_A \times \Lambda Y)) = (\Lambda_X \times \Lambda_Y)(\lambda_A \times \Lambda Y) = A \times Y$$
$$= \Lambda_{X\times Y}(cl_{\Lambda(X\times Y)}(\Lambda_{X\times Y}^{-1}(int_{X\times Y}(A\times Y))))$$

and $\Lambda_{X\times Y}$ is a covering map, $f(\lambda_A \times \Lambda Y) = cl_{\Lambda(X\times Y)}(\Lambda_{X\times Y}^{-1}(int_{X\times Y}(A\times Y)))$ and similarly, $f(\lambda_B \times \Lambda Y) = cl_{\Lambda(X\times Y)}(\Lambda_{X\times Y}^{-1}(int_{X\times Y}(B\times Y)))$. Hence $f(\lambda_A \times \Lambda Y) \cap$

 $f(\lambda_B \times \Lambda Y) = \emptyset$. Since $(\alpha, \beta) \in \lambda_A \times \Lambda Y$ and $(\gamma, \delta) \in \lambda_B \times \Lambda Y$, $f(\alpha, \beta) \neq f(\gamma, \delta)$. Hence f is one-to-one. Thus f is a homeomorphism.

- **Corollary 3.7.** (1) If X is a countably locally weakly Lindelöf, weakly P-space and Y is a locally weakly Lindelöf, then $\Lambda X \times \Lambda Y = \Lambda(X \times Y)$.
 - (2) If $X \times Y$ is a countably locally weakly Lindelöf space, then $\Lambda X \times \Lambda Y = \Lambda(X \times Y)$.
 - (3) If X and Y is a locally compact space, then $\Lambda X \times \Lambda Y = \Lambda (X \times Y)$.

REFERENCES

- 1. W.W. Comfort, N. Hindman & S. Negrepontis: F'-space and their products with P-spaces. Pacific J. Math. 28 (1969).
- 2. L. Gillman & M. Jerison: *Rings of continuous functions*. Van Nostrand, Princeton, New York, 1960.
- 3. C.I. Kim: Minimal covers and filter spaces. Topol. and its Appl. 72 (1996), 31-37.
- 4. _____: Minimal basically disconnected covers of product spaces. Commum. Korean Math. 21 (2006), 347-353.
- S.J. Porter & R.G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer, Berlin, 1988.
- 6. A.K. Veksler: P'-points, P'-sets, P'-spaces. Soviet. Math. Dokl. 4 (1973), 1443-1450.
- 7. J. Vermeer: The smallest basically disconnected preimage of a space. *Topol. Appl.* 17 (1984), 217-232.

Department of Mathematics Education, Dankook University, 126, Jukjeon, Yongin, Gyeonggi 448-701, Korea

Email address: kci206@hanmail.net