DOI QR코드

DOI QR Code

Spatial and Temporal Variation of Mesozooplankton Community in Lake Sihwa, Korea

시화호 중형동물플랑크톤 군집의 시공간적 변동

  • Yoo, Jeong-Kyu (Department of Oceanography, College of Natural Sciences Inha University) ;
  • Myung, Cheol-Soo (ECOCEAN Co. Ltd.) ;
  • Choi, Joong-Ki (Department of Oceanography, College of Natural Sciences Inha University) ;
  • Hong, Hyun-Pyo (Department of Oceanography, College of Natural Sciences Inha University) ;
  • Kim, Eun-Soo (Marine Environment & Pollution Prevention Research Department, KORDI)
  • 유정규 (인하대학교 자연과학대학 해양과학과) ;
  • 명철수 ((주)에코션) ;
  • 최중기 (인하대학교 자연과학대학 해양과학과) ;
  • 홍현표 (인하대학교 자연과학대학 해양과학과) ;
  • 김은수 (한국해양연구원 해양환경 방제연구본부)
  • Received : 2010.04.29
  • Accepted : 2010.07.04
  • Published : 2010.09.30

Abstract

The purpose of this study was to investigate the temporal and spatial variability of taxonomic groups and major species of the mesozooplankton community in Lake Shihwa, Korea. Monthly collections were carried out at five stations in Lake Shihwa for a period of one year. The mesozooplankton community showed distinct seasonal variability with water temperature and salinity. Major mesozooplankton species in each seasonal community were derived from non-metric MDS and SIMPER as follows: winter community (Acartia hongi and Eurytemora pacifica), spring community (Acartia hudsonica and Polychaeta larvae), summer community (Acartia sinjiensis, Pavocalanus crassirostris, Evadne tergestina and Cirripedia nauplii) and fall community (Paracalanus indicus and Podon leuckarti). The succession of the seasonal species, A. hudsonica and A. sinjiensis, was the most remarkable event during the seasonal changes of the mesozooplankton community. The species response curve of these species fitted with the logistic regression in relation to water temperature and salinity. The curve also correctly represented the characteristics of the occurrence of A. hudsonica and A. sinjiensis in Lake Shihwa.

Keywords

References

  1. 김종구, 김준우, 조은일 (2002) 시화호의 배수갑문 운용에 따른 수질 변화. 한국환경과학회지 11:1205-1215
  2. 김태하, 박용철, 이효진, 김동화, 박준건, 김성준, 이미연 (2004) 시화호의 계절변화에 따른 지화학적 환경요인 특성 연구. 한국환경과학회지 13:1089-1102 https://doi.org/10.5322/JES.2004.13.12.1089
  3. 김형철, 최우정, 이원찬, 구준호, 이필용, 박성은, 홍석진, 장주형 (2007) 수질관리를 위한 시화호의 환경용량 산정. 한국환경과학회지 16:571-581 https://doi.org/10.5322/JES.2007.16.5.571
  4. 박용철, 박준건, 한명우, 손승규, 김문구, 허성회 (1997) 시화호 산환-환원 환경 하의 용존 유, 무기 화합물의 생지화학적 연구. 한국해양학회지 2:53-68
  5. 박준건, 김은수, 조성록, 김경태, 박용철 (2003) 시화호 수질의 연변화 양상에 대한 연구. Ocean and Polar Res 25:459-468 https://doi.org/10.4217/OPR.2003.25.4.459
  6. 박철, 허성회 (1997) 시화호와 인근 해역의 동물플랑크톤 분포로 본 시화호의 생태적 안정성. 한국해양학회지 2:87-91
  7. 박철, 이평강, 양성렬 (2002) 계절 염분 변화에 따른 섬진강 하구역 동물플랑크톤의 분포 변화. 한국해양학회지 7:71-59
  8. 문성용, 윤호섭, 서호영, 최상덕 (2006) 가막만 동물플랑크톤 군집의 변동 특성과 환경 요인. Ocean and Polar Res 28:79-94 https://doi.org/10.4217/OPR.2006.28.2.079
  9. 신재기, 김동섭, 조경제 (2000a) 시화호에서 무기영양염과 식물플랑크톤의 동태. 한국육수학회지 33:109-118
  10. 신재기, 김동섭, 조경제 (2000b) 시화호에서 해수유입 전.후의 수환경 요인과 식물플랑크톤 동태. 한국환경과학회지 9:115-123
  11. 유광일, 김세화 (1987) 진해만 해산 지각류의 계절적인 소장. 한국해양학회지 22:80-86
  12. 유정규, 윤석현, 최중기 (2006) 인천 연안에서 요각류 Acartia hongi 춘계 개체군 형성의 영향 요인. 한국해양학회지 11:108-116
  13. 윤석현, 최중기 (2003) 경기만 동물플랑크톤 군집의 시공간적 분포. 한국해양학회지 8:243-250
  14. 이연정, 김민섭, 원은지, 신경훈 (2006) $^{13}C$ 추적자를 사용한 시화호 상류역에서의 식물플랑크톤 크기에 따른 1차생산성 측정에 관한 연구. 한국육수학회지 39:93-99
  15. 장민철, 신경순, 장풍국, 이우진 (2010) 여름철 장목만의 환경요인과 중형동물플랑크톤 단주기 변동과의 상관성. Ocean and Polar Res 32:41-52 https://doi.org/10.4217/OPR.2010.32.1.041
  16. 최중기, 이은희, 노재훈, 허성회 (1997) 시화호와 시화호 주변해역 식물플랑크톤의 대증식과 일차생산력에 관한 연구. 한국해양학회지 2:78-86
  17. 한국수자원공사.농어촌진흥공사 (1996) 시화방조제 방재차원 배수갑문 운영에 따른 수질조사 결과보고서. 242 p
  18. 해양수산부 (1998) 우리나라의 갯벌. 해양수산부, 28 p
  19. Alcaraz M (1983) Coexistence and segregation of congeneric pelagic copepods: spatial distrbution of the Acartia complex in the Ria of Vigo (NW of Spain). J Plankton Res 6:891-900
  20. Avery DE (2005) Induction of embryonic dormancy in the calanoid copepod Acartia hudsonica: proximal cues and variation among individuals. J Exp Mar Biol Ecol 314:203-214 https://doi.org/10.1016/j.jembe.2004.09.004
  21. Beaugrand G (2004) The North Sea regime shift: evidence, causes, mechanisms and consequences. Prog Oceanogr 60:245-262 https://doi.org/10.1016/j.pocean.2004.02.018
  22. Bonnet D, Frid CLJ (2004) Seven copepod species considered as indicators of water-mass influence and changes: results from a Northumberland costal station. ICES J Mar Sci 61:485-491 https://doi.org/10.1016/j.icesjms.2004.03.005
  23. Castro-Longoria E, Williams JA (1999) The production of subitaneous and diapause eggs: a reproductive strategy for Acartia bifilosa (Copepoda: Calanoida) in Southampton water, UK. J Plankton Res 21:65-84 https://doi.org/10.1093/plankt/21.1.65
  24. Chen F, Marcus NH (1997) Subitaneous, diapause, and delayed-hatching eggs of planktonic copepods from the northern Gulf of Mexico: morphology and hatching success. Mar Biol 127:587-597 https://doi.org/10.1007/s002270050049
  25. David V, Sautour B, Chardy P, Leconte M (2005) Long-term changes of the zooplankton variability in a turbid environmental: The Gironde estuary (France). Estuar Coast Shelf Sci 64:171-184 https://doi.org/10.1016/j.ecss.2005.01.014
  26. Egloff DA, Fofanoff PW, Onbe T (1997) Reproductive biology of marine cladocerans. Adv Mar Biol 31:79-167 https://doi.org/10.1016/S0065-2881(08)60222-9
  27. Grice GD, Marcus NH (1981) Dormant eggs of marine copepods. Oceanogr Mar Biol Annu Rev 19:125-140
  28. Han MW, Park YC (1999) The development of anoxia in the artificial Lake Shihwa, Korea, as a consequence of interdial reclamation. Mar Pollut Bull 38:1194-1199 https://doi.org/10.1016/S0025-326X(99)00161-7
  29. Herman SS, Mithursky JA, McErlean AJ (1968) Zooplankton and environmental characteristics of the Patuxent River estuary 1963-1965. Chesapeake Sci 9:67-82 https://doi.org/10.2307/1351248
  30. Hosmer D, Lemeshow S (2000) Applied logostic regression. Wiley, NY, 373 p
  31. Jiang X, Wang G, Li S (2004) Age, distribution and abundance of viable resting eggs of Acartia pacifica (Copepoda: Calanoida) in Xiamen Bay, China. J Exp Mar Biol Ecol 312:89-100 https://doi.org/10.1016/j.jembe.2004.06.004
  32. Katajisto T, Viitasalo M, Koski M (1998) Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Mar Ecol Prog Ser 163:133-143 https://doi.org/10.3354/meps163133
  33. Katajisto T (2003) Development of Acartia bifilosa (Copepoda: Calanoida) eggs in the northern Baltic Sea with special reference to dormancy. J Plankton Res 25: 357-364 https://doi.org/10.1093/plankt/25.4.357
  34. Katajisto T (2004) Effects of anoxia and hypoxia on the dormancy and survival of subitaneous eggs of Acartia bifilosa (Copepoda: Calanoida). Mar Biol 145:751-757
  35. Lakkis S (1994) Coexistence and competition within Acartia (Copepoda, Calanoida) congeners from Lebanese coastal water: niche overlap measurements. Hydrobiologia 292/293:481-490
  36. Lee JH, Cha JH (1997) A study of ecological succession of macrobenthic community in an artificial lake of Shihwa on the west coast of Korea : An assessment of ecological impact by embankment. Ocean Res 19:1-12 https://doi.org/10.1016/S0141-1187(97)00012-6
  37. Lee WY, McAlice BJ (1979) Seasonal succession and breeding cycles of three species of Acartia (Copepoda: Calanoida) in a Maine estuary. Estuar 2:228-235 https://doi.org/10.2307/1351569
  38. Marchetti R (1984) Quadro analytico complessivo dei resultati delle indangini condetto nrgli acquae costiere dell'Emilia Romagna: situazione e ipostesi di intervento. Regione Emilia Romagna, 310 p
  39. Marcus NH, Lutz RV (1994) Effects of anoxia on the viability of subitaneous eggs of planktonic copepods. Mar Biol 121:83-87 https://doi.org/10.1007/BF00349476
  40. Marcus NH (1996) Ecological and evolutionary significance of resting eggs in marine copepods: past, present, and future studies. Hydrobiologia 320:141-152 https://doi.org/10.1007/BF00016815
  41. Marcus NH, Lutz JP, Chanton JP (1997) Impact of anoxia and sulfide on the viability of eggs of three planktonic copepods. Mar Ecol Prog Ser 146:291-295 https://doi.org/10.3354/meps146291
  42. Marcus NH (2004) An overview of the impacts of eutrophication and chemical pollutants on copepods of the coastal zone. Zool Stud 43:211-217
  43. Marques SC, Azeiteiro UM, Leandro SM, Queiroga H, Primo AL, Martinho F, Viegas I, Pardal MA (2008) Predicting zooplankton response to environmental changes in a temperate estuarine ecosystem. Mar Biol 155:531-541 https://doi.org/10.1007/s00227-008-1052-6
  44. Martin JH (1965) Phytoplankton-zooplankton relationship in Narragansett Bay. Limnol Oceanogr 10:185-191 https://doi.org/10.4319/lo.1965.10.2.0185
  45. McLusky DS, Elliott M (2004) The Estuarine ecosystem: Ecology, threats and management. Oxford University Press, 216 p
  46. Ohtsuka S, Hoshina T, Seike Y, Ohtani S, Kunii H (1999) Seasonal changes of zooplankton community in Honjo area and its neighboring waters of Lake Nakaumi. Laguna 6:73-87
  47. Onbe T (1974) Studies on the ecology of marine cladocerans. J Fac Fish Anim Husb Hiroshima Univ 13:83-179
  48. Onbe T (1985) Seasonal fluctuation in the abundance of populations of marine cladocerans and resting eggs in the Inland Sea of Japan. Mar Biol 87:83-88 https://doi.org/10.1007/BF00397009
  49. Parson TR, Matia Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, 173 p
  50. Raymont JEG (1983) Plankton and productivity in the oceans. Vol II. Zooplankton. Pergamon Press, Oxford, 824 p
  51. Rodriguez V, Jimenez F (1990) Co-existence within a group of congeneric species Acartia (Copepoda, Calanoida): sexual dimorphism and ecological niche in Acartia grani. J Plankton Res 12:497-511 https://doi.org/10.1093/plankt/12.3.497
  52. Runge JA (1988) Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability. Hydrobiologia 167/168:67-71
  53. Sedlacek C, Marcus NH (2005) Egg production of the copepod Acartia tonsa: The influence of hypoxia and food concentration. J Exp Mar Biol Ecol 318:183-190 https://doi.org/10.1016/j.jembe.2004.12.012
  54. Soh HY, Jeong HG (2003) Spatio-temporal distribution of the genus Acartia (Copepoda: Calanoida) in the Southwestern waters of Korea. Korean J Environ Biol 21:422-427
  55. Sullivan BK, McManus L (1986) Factors controlling seasonal succession of the copepods Acartia hudsonica and A. tonsa in Narragansett Bay, Rhode Island: temperature and resting egg prodcution. Mar Ecol Prog Ser 28:121-128 https://doi.org/10.3354/meps028121
  56. Sullivan BK, Castello JH, Van Keuren D (2007) Seasonality of copepods Acartia hudsonica and Acartia tonsa in Narragansett Bay, RI, USA during a period of climate change. Estuar Coast Self Sci 73:259-267 https://doi.org/10.1016/j.ecss.2007.01.018
  57. Tang KW, Chen QC, Wong CK (1995) Distribution and biology of marine cladocerans in the coastal waters of southern China. Hydrobiologia 307:99-107 https://doi.org/10.1007/BF00032001
  58. Ueda, H (1982) Zooplankton investigations in Shijiki Bay. II. Zooplankton communities from September 1975 to April 1976, with special reference to distributional characteristics of inlet copepods. Bull Seikai Reg Fish Res Lab 58:1-22
  59. Uye S (1980) Development of neritic copepods Acartia clausi and A. steueri. I. Some environmental factors affecting egg development and the nature of resting eggs. Bull Plankton Soc Jpn 27:1-9
  60. Uye S (1985) Resting egg production as a life history stradegy of marine planktonic copepods. Bull Mar Sci 37:440-449
  61. Uye S (1994) Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence. Hydrobiologia 292/293:513-519
  62. Uye S, Shimazu T, Yamamuro M, Ishitobi Y, Kamiya H (2000) Geographic and seasonal variations in mesozooplankton abundance and biomass in relation to environmental parameters in Lake Shinji-Ohashi River-Lake Nakaumi brackish-water system, Japan. J Mar Sys 26:193-207 https://doi.org/10.1016/S0924-7963(00)00054-3
  63. Viitasalo M (1992) Calanoid resting eggs in the Baltic Sea: implications for the population dynamics of Acartia bifilosa (Copepoda). Mar Biol 114:397-405 https://doi.org/10.1007/BF00350030
  64. Youn SH (2004) Spatial and temporal distribution of zooplankton community and production of copepod Acartia hongi in Kyeonggi Bay. Ph.D Thesis Inha Univ 306 p
  65. Youn SH, Choi JK (2007) Egg production of the copepod Acartia hongi in Kyeonggi Bay, Korea. J Mar Sys 67:217-224 https://doi.org/10.1016/j.jmarsys.2006.05.017
  66. Zhong XF, Xiao YC (1992) Resting eggs of Acartia bifilosa Giesbrecht and A. pacifica Steuer in Jiaozhou Bay. Mar Sci (Qingdao) 5:55-59

Cited by

  1. Environmental and ecological effects of Lake Shihwa reclamation project in South Korea: A review vol.102, 2014, https://doi.org/10.1016/j.ocecoaman.2013.12.018
  2. Annual Variations in Community Structure of Mesozooplankton by Short-term Sampling in Jangmok Harbor of Jinhae Bay vol.33, pp.3, 2011, https://doi.org/10.4217/OPR.2011.33.3.235
  3. Dense winter bloom of the dinoflagellate Heterocapsa triquetra below the thick surface ice of brackish Lake Shihwa, Korea vol.59, pp.4, 2011, https://doi.org/10.1111/j.1440-1835.2011.00626.x
  4. Seasonal Variation of Mesozooplankton Communities in the Semi-enclosed Muan Bay, Korea vol.34, pp.1, 2012, https://doi.org/10.4217/OPR.2012.34.1.001
  5. Modeling the effect of nutrient enrichment on the plankton population: Validation using mesocosm experiment data vol.23, pp.5, 2011, https://doi.org/10.9765/KSCOE.2011.23.5.358
  6. The occurrence of Acartia species and their environmental characteristics at three ports in Korea vol.46, pp.4, 2011, https://doi.org/10.1007/s12601-011-0018-7