DOI QR코드

DOI QR Code

Stochastic ship roll motion via path integral method

  • Cottone, G. (Dipartimento do Ingegneria Strutturale Aerospazialee Geotecnica, Viale delle Scienze) ;
  • Paola, M. Di (Dipartimento do Ingegneria Strutturale Aerospazialee Geotecnica, Viale delle Scienze) ;
  • Ibrahim, R. (Wayne State Uiversity, Department of Mechanical Engineering) ;
  • Pirrotta, A. (Dipartimento do Ingegneria Strutturale Aerospazialee Geotecnica, Viale delle Scienze) ;
  • Santoro, R. (Dipartimento do Ingegneria Strutturale Aerospazialee Geotecnica, Viale delle Scienze)
  • Published : 2010.09.30

Abstract

The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied for ship roll dynamics under random impulsive white noise excitation.

Keywords

References

  1. Arnold, L. Chueshov, I. and Ochs, G., 2004. Stability and Capsizing of Ships in Random Sea – A Survey. Nonlin Dyn, 36, pp.135-179. https://doi.org/10.1023/B:NODY.0000045506.30721.f2
  2. Atkinson, J.D., 1973. Eigenfunction expansions for randomly excited non-linear systems. J Sound Vib, 30, pp. 153-172. https://doi.org/10.1016/S0022-460X(73)80110-5
  3. Barone, G. Navarra G. and Pirrotta, A., 2008. Probabilistic response of linear structures equipped with nonlinear damper devices (PIS method). Probab Eng Mech, 23(2-3), pp.125-133. https://doi.org/10.1016/j.probengmech.2007.12.025
  4. Bass, D.W. and Haddara, M.R., 1987. On the modeling of the nonlinear damping moment for the rolling motion of a ship. Proc Int Assoc Sci Techn (IASTED), Paris, France, pp. 346-349.
  5. Bass, D.W. and Haddara, M.R., 1988. Nonlinear models of ship roll damping. Int Shipbuilding Prog, 35(401), pp. 5-24.
  6. Bulian, G., 2005. Nonlinear parametric rolling in regular waves – a general procedure for the analytical approximation of the GZ curve and its use in time domain simulations. Ocean Eng, 32, pp. 309-330. https://doi.org/10.1016/j.oceaneng.2004.08.008
  7. Cardo, A., 1982. On damping models in free and forced rolling motion. Ocean Eng, 9 (2), pp. 171-179. https://doi.org/10.1016/0029-8018(82)90012-9
  8. Caughey, T.K. and Dienes, J.K., 1961. Analysis of Nonlinear First-Order system with a White Noise Input. J Appl Phys 32(11), pp. 2476-2483. https://doi.org/10.1063/1.1777094
  9. Chakrabarti, S., 2001. Empirical calculations of roll damping for ships and barges. Ocean Eng, 28(7), 915-932. https://doi.org/10.1016/S0029-8018(00)00036-6
  10. Dalzell, J.F., 1976. A note on the form of ship roll damping. J Ship Res 22, pp. 178-185.
  11. Dimentberg, M.F., 1982. An Exact Solution to a Certain Nonlinear Random Vibration Problem. Int J Nonlin Mech, 17(4), pp. 231-236. https://doi.org/10.1016/0020-7462(82)90023-3
  12. Di Paola, M. and Pirrotta, A., 1999. Nonlinear systems under impulsive parametric input. Int J Nonlin Mech, 34, pp.843-851. https://doi.org/10.1016/S0020-7462(98)00057-2
  13. Di Paola, M. and Santoro, R., 2008. Nonlinear systems under Poisson white noise handled by path integral solution. J Vib Control, 14(1-2), pp. 35-49. https://doi.org/10.1177/1077546307079386
  14. El-Bassiouny, A.F., 2007. Nonlinear analysis for a ship with a general roll-damping model. Physica Scripta, 75, pp. 691-701. https://doi.org/10.1088/0031-8949/75/5/018
  15. Froude W.F., 1863. Remarks on Mr. Scott Russell's paper on rolling. Trans Inst Naval Res, 4, pp. 232-275.
  16. Gu, J.Y., 2006. Calculation of ship rolling probability using a new path integration method. J Ship Mech, 10(6), pp. 43-52.
  17. Ibrahim, R.A. Chalhoub, N.G. and Falzarano, J., 2007. Ice Interaction with Ships and Ocean Structures and Their Control. ASME, Appl Mech Rev, 60(5), pp. 246-289. https://doi.org/10.1115/1.2777172
  18. Ibrahim, R.A. and Grace, I.M., 2010. Modeling of ship roll dynamics and its coupling with heave and pitch. Mathematical Problems in Engineering, pp. 1-31.
  19. Ikeda, Y. Himeno, Y. and Tanaka, N., 1978. Components of Roll Damping of Ships at Forward Speed,Journal of Society Naval Architects, 143, pp. 121-133.
  20. Ikeda, Y. Fujiwara, T. and Katayama, T., 1993. Roll damping of a sharp-cornered barge and roll control by a new-type stabilizer. Proc 3rd Int Offshore and Polar Engineering Conference, Singapore, 6-11 June 1993, pp. 634-539.
  21. Koyluoglu, H.U. Nielsen, S.R.K. and Iwankiewicz, R., 1995. Response and reliability of Poisson-driven systems by path integration. ASCE, J Eng Mech, 121(1), pp. 117-130. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:1(117)
  22. Kwon, S.H. Kim, D.W. and Chung, J., 1993. Application of path integral solution to ship rolling motion. Proc 3rd Int Offshore and Polar Engineering Conference, Singapore, 6-11 June 1993, pp. 657-660.
  23. Lin, H. and Yim, S.C.S., 1995. Chaotic roll motion and capsize of ships under periodic excitation with random noise. Appl Ocean Res, 17(3), pp. 185-204. https://doi.org/10.1016/0141-1187(95)00014-3
  24. Liqin, L. and Yougang, T., 2007. Stability of ships with water on deck in random beam waves. J Vibr Control, 13(3),pp.269-280. https://doi.org/10.1177/1077546307073676
  25. Mamontov, E. and Naess, A., 2009. A'n analytical-numerical method for fast evaluation of probability densities for transient solutions of nonlinear Ito's stochastic differential equations. Int J Engrg Sci, 47(1), pp. 116-130. https://doi.org/10.1016/j.ijengsci.2008.08.001
  26. Mathisen, J.B. and Price, W.G., 1984. Estimation of ship roll damping coefficients. Trans,RINA, 127, pp. 295-307.
  27. Meyerhoff, W.K. and Schlachter, G., 1980. An approach for the determination of hull-girder loads in a seaway including hydrodynamic impacts. Ocean Eng, 7(2), pp. 305-326. https://doi.org/10.1016/0029-8018(80)90060-8
  28. Morison, J.R. O'Brien, M.P. Johnson, J.W. and Schaaf, S.A., 1950. The force exerted by surface waves on a pile. AIME, 189, pp.149-154.
  29. Nayfeh, A.H. and Balachandran, B., 1995. Applied Nonlinear Dynamics. Wiley Series in Nonlinear Science, New York.
  30. Paulling, J.R. and Rosenberg, R.M., 1959. On unstable ship motions resulting from nonlinear coupling. J Ship Res, 2,pp. 36-46.
  31. Proppe, C., 2003. Exact stationary probability density functions for nonlinear systems under Poisson white noise excitation. Int J Nonlin Mech, 38, pp. 557-564. https://doi.org/10.1016/S0020-7462(01)00084-1
  32. Sarpkaya, T. and Isaacson, M., 1981. Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold, New York.
  33. Spencer, B.F. and Bergman, L.A., 1993. On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems. Nonlin Dyn, 4, pp. 357-372. https://doi.org/10.1007/BF00120671
  34. Surendran, S. Lee, S.K. Reddy, J.V.R. and Lee, G., 2005. Nonlinear roll Dynamics of a Ro-Ro Ship in Waves. Ocean Eng, 32, pp. 1818-1828. https://doi.org/10.1016/j.oceaneng.2004.11.014
  35. Taylan, M., 2000. The effect of nonlinear damping and restoring in ship rolling. Ocean Eng, 27, pp. 921-932. https://doi.org/10.1016/S0029-8018(99)00026-8
  36. Timco, G. W. and Johnston, M., 2004. Ice loads on the caisson structures in the Canadian Beaufort Sea. Cold Reg Sci Techn, 38, pp. 185-209. https://doi.org/10.1016/j.coldregions.2003.10.007
  37. Vasta, M., 1995. Exact stationary solution for a class of nonlinear systems driven by a non-normal delta-correlated processes. Int J Nonlin Mech, 30(4), pp. 407-418. https://doi.org/10.1016/0020-7462(95)00009-D

Cited by

  1. Survival Probability Determination of Nonlinear Oscillators Subject to Evolutionary Stochastic Excitation vol.81, pp.5, 2014, https://doi.org/10.1115/1.4026182