DOI QR코드

DOI QR Code

Antioxidant and Alpha-Glucosidase Inhibitory Activity of Strychnos nux-vomica Extracts

마전자 추출물의 항산화 및 Alpha-Glucosidase 저해 활성

  • Lee, Jeung-Min (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Jae-Hee (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Hae-Ryong (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Eun-Ju (Dept. of Food and Nutrition, Kyungnam University)
  • 이정민 (경남대학교 식품생명학과) ;
  • 박재희 (경남대학교 식품영양학과) ;
  • 박해룡 (경남대학교 식품생명학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Received : 2010.06.03
  • Accepted : 2010.07.20
  • Published : 2010.09.30

Abstract

The physiological activities of Strychnos nux-vomica extracts were investigated through the total phenolic contents (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (RSA), comet assay, and $\alpha$-glucosidase inhibitory activity. S. nux-vomica extracts were prepared with methanol, ethanol, and acetone. The methanol extract showed the highest phenolic content (71 mg/100 g gallic acid equivalents). Pretreatment with S. nux-vomica extracts resulted in significant reductions in oxidative DNA damage at all of the concentrations tested ($1{\sim}50\;{\mu}g/mL$). The $\alpha$-glucosidase inhibitory activity of a methanol extract was 12.8% at the concentration of 1 mg/mL. Therefore, these results indicate that S. nux-vomica might be a noble potential candidate exhibiting antioxidant and $\alpha$-glucosidase inhibitory activity.

본 연구는 마전자(Strychnos nux-vomica) 추출물의 항산화 활성 및 $\alpha$-glucosidase 저해활성을 측정하였다. 먼저, 마전자를 각각의 용매로 추출하여 페놀 함량을 알아본 결과 100 g당 SNM에서 71.43 mg을 함유하고 있으며, SNE에서는 24.51 mg, SNA에서는 11.17 mg을 함유하고 있었다. DPPH 라디칼 소거능은 SNM, SNE가 1 mg/mL의 농도에서 50% 정도의 활성을 나타내 항산화 효과가 있다는 것을 확인할 수 있었다. 또한 $200\;{\mu}M$ $H_2O_2$에 의한 DNA 손상에 대해 마전자 추출물의 보호 효과를 확인할 수 있었다. SNM의 $\alpha$-glucosidase 저해활성 측정 시 SNM 1 mg/mL의 농도에서 12.8%의 억제 활성을 나타내었고, SNM 처리시간을 증가시킬 경우 그 활성도가 유의적으로 증가하는 것을 보였다. 이상의 결과로 마전자 추출물의 항산화 활성 및 SNM의 $\alpha$-glucosidase 억제 활성을 확인할 수 있었다.

Keywords

References

  1. Cowburn R, Hardy J, Roberts P, Briggs R. 1988. Regional distribution of pre- and postsynaptic glutamatergic function in Alzheimer's disease. Brain Res 452: 403-407. https://doi.org/10.1016/0006-8993(88)90048-0
  2. Golbidi S, Laher I. 2010. Antioxidant therapy in human endocrine disorders. Med Sci Monit 16: RA9-24.
  3. Miller E, Mrowicka M, Zolyński K, Kedziora J. 2009. Oxidative stress in multiple sclerosis. Pol Merkur Lekarski 27: 499-502.
  4. Guida G, Culla B, Scirelli T, Bellone G, Sciascia S, Brussino L, Novero D, Palestro G, Heffler E, Gavarotti P, Rolla G, Bucca C. 2009. Exhaled nitric oxide and nitric oxide synthase expression in Hodgkin's disease. Int J Immunopathol Pharmacol 22: 1027-1034.
  5. Hakim FA, Pflueger A. 2010. Role of oxidative stress in diabetic kidney disease. Med Sci Monit 16: RA37-48.
  6. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. 2010. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neurosci Lett 469: 6-10. https://doi.org/10.1016/j.neulet.2009.11.033
  7. Egede LE, Ellis C. 2010. Diabetes and depression: global perspectives. Diabetes Res Clin Pract 87: 302-312. https://doi.org/10.1016/j.diabres.2010.01.024
  8. Deedwania PC, Fonseca VA. 2005. Diabetes, prediabetes, and cardiovascular risk: shifting the paradigm. Am J Med 118: 939-947. https://doi.org/10.1016/j.amjmed.2005.05.018
  9. Glaser N, Yuen N, Anderson SE, Tancredi DJ, O'Donnell ME. 2010. Cerebral metabolic alterations in rats with diabetic ketoacidosis: effects of treatment with insulin and intravenous fluids and effects of bumetanide. Diabetes 59: 702-709. https://doi.org/10.2337/db09-0635
  10. Shindler DM, Kostis JB, Yusuf S, Quinones MA, Pitt B, Stewart D, Pinkett T, Ghali JK, Wilson AC. 1996. Diabetes mellitus, a predictor of morbidity in the studies of left ventricular dysfunction (SOLVD) trials and registry. Am J Cardiol 77: 1017-1020. https://doi.org/10.1016/S0002-9149(97)89163-1
  11. Stancoben A, McGuire DK. 2007. Preventing macrovascular complications in type 2 diabetes mellitus: glucose control and beyond. Am J Cardiol 99(11A): 5H-11H. https://doi.org/10.1016/S0002-9149(07)00581-4
  12. Jin HK, Chung HK. 2009. Self-reported goals in aged patients type 2 diabetes mellitus. Korean Diabetes J 33:439-447. https://doi.org/10.4093/kdj.2009.33.5.439
  13. BS Min, SK Kang. 1984. Side reaction and its management of the oral hypoglycemic agents. Korean Diabetes J 8: 1-3.
  14. Nair S, Wilding JP. 2010. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab 95: 34-42. https://doi.org/10.1210/jc.2009-0473
  15. Adisakwattana S, Chantarasinlapin P, Thammarat H,Yibchok-Anun S. 2009. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alphaglucosidase. J Enzyme Inhib Med Chem 24: 1194-1200. https://doi.org/10.1080/14756360902779326
  16. Gholamhoseinian A, Fallah H, Sharifi far F. 2009. Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on alpha-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. Phytomedicine 16: 935-941.
  17. Kang W, Zhang L, Song Y. 2009. Alpha-glucosidase inhibitors from Luculia pinciana. Zhongguo Zhong Yao Za Zhi 34: 406-409.
  18. Rosak C, Mertes G. 2009. Effects of acarbose on proinsulin and insulin secretion and their potential significance for the intermediary metabolism and cardiovascular system. Curr Diabetes Rev 5: 157-164. https://doi.org/10.2174/157339909788920910
  19. Goke B, Fuder H, Wieckhorst G, Theiss U, Stridde E, Littke T, Kleist P, Arnold R, Lücker PW. 1995. Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 56: 493-501. https://doi.org/10.1159/000201282
  20. Vannasaeng S, Ploybutr S, Nitiyanant W, Peerapatdit T, Vichayanrat A. 1995. Effects of alpha-glucosidase inhibitor (acarbose) combined with sulfonylurea or sulfonylurea and metformin in treatment of non-insulin-dependent diabetes mellitus. J Med Assoc Thai 78: 578-585.
  21. Drent ML, Tollefsen AT, van Heusden FH, Hoenderdos EB, Jonker JJ, van der Veen EA. 2002. Dose-dependent efficacy of miglitol, an alpha-glucosidase inhibitor, in type 2 diabetic patients on diet alone: results of a 24-week double-blind placebo-controlled study. Diabetes Nutr Metab 15: 152-159.
  22. Han QB, Li SL, Qiao CF, Song JZ, Cai ZW, Pui-Hay But P, Shaw PC, Xc HX. 2008. A simple method to identify the unprocessed Strychnos seeds used in herbal medicinal products. Planta Med 74: 458-463. https://doi.org/10.1055/s-2008-1034359
  23. Frederich M, Choi YH, Verpoorte R. 2003. Quantitative analysis of strychnine and Brucine in Strychnos nux-vomica using 1H-NMR. Planta Med 69: 1169-1171. https://doi.org/10.1055/s-2003-818014
  24. Cai B, Nagasawa T, Kadota S, Hattori M, Namba T, Kuraishi Y. 1996. Processing of nux vomica. Ⅶ. Antinociceptive effects of crude alkaloids from the processed and unprocessed seeds of Strychnos nux-vomica in mice. Biol Pharm Bull 19: 127-131.
  25. Duddukuri GR, Brahmam AN, Rao DN. 2008. Suppressive effect of Strychnos nux-vomica on induction of ovalbumin-specific IgE antibody response in mice. Indian J Biochem Biophys 45: 341-344.
  26. Tripathi YB, Reddy MM, Pandey RS, Subhashini J, Tiwari OP, Singh BK, Reddanna P. 2004. Anti-inflammatory properties of BHUx, a polyherbal formulation to prevent atherosclerosis. Inflammopharmacology 12: 131-152. https://doi.org/10.1163/1568560041352301
  27. Yin W, Deng XK, Yin FZ, Zhang XC, Cai BC. 2007. The cytotoxicity induced by brucine from the seed of Strychnos nux-vomica proceeds via apoptosis and in mediated by cyclooxygenase 2 and caspase 3 in SMMC 7221 cells. Food Chem Toxicol 45: 1700-1708. https://doi.org/10.1016/j.fct.2007.03.004
  28. Kim HY, Jun BS, Kim SK, Cha JY, Cho YS. 2000. Polyphenolic compound content and antioxidative by extracts from seed sprout and flower of safflower (Carthamus tinctorius L.). J Korean Soc Food Sci Nutr 29: 1127-1132.
  29. Xu ML, Wang L, Kim HS, Jin CW, Cho DH. 2010. Antioxidant and anti-diabetes activity of extracts from Machilus thunbergii S. et Z. Korean J Medicinal Crop Sci 18: 34-39.
  30. Cherdshewasart W, Sutjit W. 2008. Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine 15: 38-43. https://doi.org/10.1016/j.phymed.2007.07.058
  31. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolibidic-phosphotungstic reagents. Am J Enol Vitic 16: 144-158
  32. Thitilertdecha N, Teerawutgulrag A, Rakariyatham N.2008. Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT-Food Sci Technol 41: 2029-2035 https://doi.org/10.1016/j.lwt.2008.01.017
  33. Singh PN, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  34. Ostling O, Johanson KJ. 1984. Microgel electrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commum 123:291-298. https://doi.org/10.1016/0006-291X(84)90411-X
  35. Park JH, Park YK, Park E. 2009. Antioxidative and antigenotoxic effects of garlic (Allium sativum L.) prepared by different processing methods. Plant Food Hum Nutr 64:244-249. https://doi.org/10.1007/s11130-009-0132-1
  36. Cai BC, Chen L, Namba T. 1995. Processing of nux vomica. IV. A comparison of nine alkaloids from processed seeds of Strychnos nuxvomica L. on tumor cell lines. Natural Medicines 49: 39-42.
  37. Denga XK, Yinb W, Li WD, Yin FZ, Lu XY, Zhang XC, Huab ZC, Cai BC. 2006. The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism. J Ethnopharma 106: 179-186. https://doi.org/10.1016/j.jep.2005.12.021
  38. Vijayakumar R, Zhao CX, Gopal R, Jaleel CA. 2009. Nonenzymatic and enzymatic antioxidant variations in tender and mature leaves of Strychnos nux-vomica L. (Family: Loganiaceae). C R Biol 332: 52-57. https://doi.org/10.1016/j.crvi.2008.09.012
  39. Wickens AP. 2001. Ageing and the free radical theory. Respir Physiol 128: 379-391. https://doi.org/10.1016/S0034-5687(01)00313-9

Cited by

  1. Biological Activities of Extracts from Flowers of Angelica gigas Nakai vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1079
  2. Effect of Extraction Solvent on the Physiological Properties of Korean Pear Peel (Pyrus pyrifolia cv. Niitaka) vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.254
  3. In vitro Antioxidant Activity and α-Glucosidase and Pancreatic Lipase Inhibitory Activities of Several Korean Sanchae vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.164
  4. Mineral Content and Antioxidants Activity of Portulaca oleracea vol.21, pp.10, 2011, https://doi.org/10.5352/JLS.2011.21.10.1393
  5. Quality Characteristics of Brown Rice Vinegar Prepared using Varying Amounts of Nuruk (an Amylolytic Enzyme Preparation) and Employing Different Fermentation Conditions vol.18, pp.1, 2011, https://doi.org/10.11002/kjfp.2011.18.1.026
  6. Alpha-glucosidase Inhibition Activity of Methanol Extracts Obtained from Nine Pteridophyte Species Native to Korea vol.26, pp.4, 2013, https://doi.org/10.7732/kjpr.2013.26.4.411
  7. Anti-diabetic and Hypoglycemic Effect of Eleutherococcus spp. vol.39, pp.12, 2010, https://doi.org/10.3746/jkfn.2010.39.12.1761
  8. Changes in Radical Scavenging Activity and α-Glucosidase Inhibitory Activity of Dried Daraesoon (Shoot of Hardy Kiwi, Actinidia arguta) during Cooking vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.208