DOI QR코드

DOI QR Code

Characterization of macroalgal epiphytes on Thalassia testudinum and Syringodium filiforme seagrass in Tampa Bay, Florida

  • Won, Boo-Yeon (Department of Marine Life Science, Chosun University) ;
  • Yates, Kim K. (U.S. Geological Survey) ;
  • Fredericq, Suzanne (Department of Biology, University of Louisiana at Lafayette) ;
  • Cho, Tae-Oh (Department of Marine Life Science, Chosun University)
  • Received : 2010.08.01
  • Accepted : 2010.08.28
  • Published : 2010.09.15

Abstract

Seagrass epiphyte blooms potentially have important economic and ecological consequences in Tampa Bay, one of the Gulf of Mexico's largest estuaries. As part of a Tampa Bay pilot study to monitor the impact of environmental stresses, precise characterization of epiphyte diversity is required for efficient management of affected resources. Thus, epiphyte diversity may be used as a rational basis for assessment of ecosystem health. In May 2001, epiphytic species encompassing green, brown and red macroalgae were manually collected from dense and sparse seagrass beds of Thalassia testudinum and Syringodium filiforme. A total of 20 macroalgal epiphytes, 2 Chlorophyta, 2 Phaeophyta, and 16 Rhodophyta, were found on T. testudinum and S. filiforme seagrass at the four sampling sites (Bishop Harbor, Cockroach Bay, Feather Sound, and Mariposa Key). The Rhodophyta, represented by 16 species, dominated the numbers of species. Among them, the thin-crusted Hydrolithon farinosum was the most commonly found epiphyte on seagrass leaves. Species number, as well as species frequency of epiphytes, is higher at dense seagrass sites than sparse seagrass sites. Four attachment patterns of epiphytes can be classified according to cortex and rhizoid development: 1) creeping, 2) erect, 3) creeping & erect, and 4) erect & holding. The creeping type is characterized by an encrusting thallus without a rhizoid or holdfast base. Characteristics of the erect type include a filamentous thallus with or without a cortex, and a rhizoid or holdfast base. The creeping and erect type is characterized by a filamentous thallus with a cortex and rhizoid. A filamentous thallus with a cortex, holdfast base, and host holding branch is characteristics of the erect and holdfast attachment type. This study characterized each species found on the seagrass for epiphyte identification.

Keywords

References

  1. Agardh, C. A. 1822. Algae. In Kunth, C. S. (Ed.) Synopsis Plantarum, Quas, in Itinere ad Plagam Aequinoctialem Orbis Novi, Collegerunt Al. de Humboldt et Am. Bonpland. Levrault, Paris, pp. 1-16.
  2. Agardh, C. A. 1824. Systema algarum. Berling, Lund, 312 pp.
  3. Agardh, C. A. 1828. Species algarum cognitae, cum synonymis, differentiis specificis et descriptionibus succinctis, vol. 2, part 1. Ernst Martitius, Greifswald, 189 pp.
  4. Agardh, J. G. 1883. Till algernes systematik. Nya bidrag. (Tredje afdelningen.). Lunds Universitets Ars-Skrift, Afdelningen for Mathematik och Naturvetenskap 19:1-177.
  5. Almasi, M. N., Hoskin, C. M., Reed, J. K. & Milo, J. 1987. Effects of natural and artificial Thalassia on rates of sedimentation. J. Sediment. Petrol. 57:901-906.
  6. Ambronn, H. 1880. Ueber einige Falle von Bilateralitat bei den Florideen. Botanische Zeitung 38:161-174, 177-185, 193-200, 209-216, 225-233.
  7. Ballantine, D. & Humm, H. J. 1975. Benthic algae of the Anclote estuary I. Epiphytes of seagrass leaves. Fla. Sci. 38:150-162.
  8. Cho, T. O., Boo, S. M., Hommersand, M. H., Maggs, C. A., McIvor, L. & Fredericq, S. 2008. Gayliella gen. nov. in the tribe Ceramieae (Ceramiaceae, Rhodophyta) based on molecular and morphological evidence. J. Phycol. 44:721-738. https://doi.org/10.1111/j.1529-8817.2008.00505.x
  9. Dawes, C. J. 1987. The dynamic seagrasses of the Gulf of Mexico and Florida coasts. Fla. Marine Research Publ. No. 42. In Durako, M. J., Phillips, R. C. & Lewis, R. R. III (Eds.) Proc. of Symp. on Subtropical Seagrasses of the S.E. U. S., Aug 12 1985. Florida Department of Natural Resources, Bureau of Marine Research, St. Petersburg, FL.
  10. Dawes, C. J., Hall, M. O. & Riechert, R. K. 1985. Seasonal biomass and energy content in seagrass communities on the West Coast of Florida. J. Coast. Res. 1:255-262.
  11. Dawes, C. J., Hanisak, D. & Kenworthy, W. J. 1995. Seagrass biodiversity in the Indian River Lagoon. Bull. Mar. Sci. 57:59-66.
  12. Drew, K. M. 1956. Conferva ceramicola Lyngbye. Bot. Tidsskr. 53:67-74.
  13. Eiseman, N. J. 1980. An illustrated guide to the sea grasses of the Indian River region of Florida. Technical Report No. 31. Harbor Branch Foundation Inc, Fort Pierce, 24 pp.
  14. Harvey, W. H. 1852. Nereis boreali-Americana. Part I. Melanospermeae. Smithsonian Contrib. Knowledge 3:1-150.
  15. Harvey, W. H. 1853. Nereis boreali-americana; or, contributions towards a history of the marine algae of the Atlantic and Pacific coasts of North America. Part II. Rhodospermeae. Smithsonian Contrib. Knowledge 5:1-258.
  16. Heijs, F. M. L. 1984. Annual biomass and production of epiphytes in three monospecific seagrass communities of Thalassia hemprichii (Ehrenb.) Aschers. Aquat. Bot. 20:195-218. https://doi.org/10.1016/0304-3770(84)90087-1
  17. Hemminga, M. A. & Duarte, C. M. 2000. Seagrass ecology. Cambridge University Press, Cambridge, 310 pp.
  18. Hollenberg, G. J. 1942. An account of the species of Polysiphonia on the Pacific coast of North America. I. Oligosiphonia. Am. J. Bot. 29:772-785. https://doi.org/10.2307/2437732
  19. Hooker, W. J. 1833. Div. I. Inarticulatae. In Hooker, W. J. (Ed.) The English Flora of Sir James Edward Smith. Class XXIV. Cryptogamia. Vol. V. (or Vol. II of Dr. Hooker’s British flora). Part I. Comprising the Mosses, Hepaticae, Lichens, Characeae and Algae. Longman, Rees, Orme, Brown, Green & Longman, London, pp. 250-259, 264-322.
  20. Howe, M. A. 1920. Algae. In Britton, N. L. & Millspaugh, C. F. (Eds.) The Bahama Flora. The Authors, New York, pp. 553-618.
  21. Humm, H. J. 1964. Epiphytes of the seagrass, Thalassia testudinum, in Florida. Bull. Mar. Sci. Gulf Caribb. 14:306-341.
  22. Jacquin, N. J. 1791. Collectanea ad botanicam, chemiam, et historiam naturalem spectantia, cum figuris, vol. 3. Officina Wappleriana, Vindobonae, 306 pp.
  23. Koch, E. W. 1999. Sediment resuspension in a shallow Thalassia testudinum banks ex Konig bed. Aquat. Bot. 65:269-280. https://doi.org/10.1016/S0304-3770(99)00045-5
  24. Kutzing, F. T. 1843. Phycologia generalis oder Anatomie, Physiologie und Systemkunde der Tange: Bearb. von Friedrich Traugott Kutzing. Mit 80 farbig gedruckten Tafeln, gezeichnet und gravirt vom Verfasser. F. A. Brockhaus, Leipzig, 458 pp.
  25. Kutzing, F. T. 1847. Diagnosen und Bemerkungen zu neuen oder kritischen Algen. Bot. Zeit. 5:1-5, 22-25, 33-38, 52-55, 164-167, 177-180, 193-198, 219-223.
  26. Kutzing, F. T. 1849. Species algarum. F. A. Brockhaus, Leipzig, 922 p.
  27. Lamouroux, J. V. F. 1813. Essai sur les genres de la famille des thalassiophytes non articulees. Ann. Mus. Hist. Natl. Paris 20:21-47, 115-139, 267-293.
  28. Lamouroux, J. V. F. 1816. Histoire des polypiers coralligenes flexibles, vulgairement nommes zoophytes. De l’imprimerie de F. Poisson, Caen, 560 pp.
  29. Land, L. S. 1970. Carbonate mud: production by epibiont growth on Thalassia testudinum. J. Sediment. Petrol. 40:1361-1363. https://doi.org/10.1306/74D721B7-2B21-11D7-8648000102C1865D
  30. Leliaert, F., Vanreusel, W., De Clerck, O. & Coppejans, E. 2001. Epiphytes on the seagrasses of Zanzibar Island (Tanzania), floristic and ecological aspects. Belg. J. Bot. 134:3-20.
  31. Littler, D. S. & Littler, M. M. 2000. Caribbean reef plants. An identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Offshore Graphics, Washington, 542 pp.
  32. Montagne, J. F. C. 1841. Plantae cellulares. In Barker-Webb, P. & Berthelot, S. (Eds.) Histoire Naturelle des Iles Canaries, vol. 3. Bethune, Paris, pp. 161-208.
  33. Penrose, D. & Chamberlain, Y. M. 1993. Hydrolithon farinosum (Lamouroux) comb. nov.: implications for generic concepts in the Mastophoroideae (Corallinaceae, Rhodophyta). Phycologia 32:295-303. https://doi.org/10.2216/i0031-8884-32-4-295.1
  34. Roth, A. W. 1797. Catalecta botanica quibus plantae novae et minus cognitae describuntur atque illustrantur. Fasc. 1. In Bibliopolo I. G. Mulleriano, Leipzig, 244 pp.
  35. Silva, P. C., Menez, E. G. & Moe, R. L. 1987. Catalog of the benthic marine algae of the Philippines. Smithsonian Contrib. Mar. Sci. 27:1-179. https://doi.org/10.5479/si.1943667X.27.1
  36. Turner, D. 1808-1809. Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones et historia. Fuci, or coloured figures and descriptions of the plants referrred by botanists to the genus Fucus, vol. 2. Typis J. M’Creery, impensis J. et A. Arch, London, 164 pp.
  37. Virnstein, R. W. & Cairns, K. D. 1986. Seagrass maps of the Indian River Lagoon: final report to DER, September 1986. Seagrass Ecosystems Analysts, Vero Beach, 27 pp.
  38. Won, B. Y., Cho, T. O. & Fredericq, S. 2009. Morphological and molecular characterization of species of the genus Centroceras (Ceramiaceae, Ceramiales), including two new species. J. Phycol. 45:227-250. https://doi.org/10.1111/j.1529-8817.2008.00620.x
  39. Wulfen, F. X. 1803. Cryptogama aquatica. Arch. Bot. 3:1-64.
  40. Wynne, M. J. 1985. Concerning the names Scagelia corallina and Heterosiphonia wurdmannii (Ceramiales, Rhodophyta). Cryptogam. Algol. 6:81-90.
  41. Zanardini, G. 1839. Sulle alghe. Lettera alla Direzione della Biblioteca Italiana. Bibl. Ital. 96:195-229.

Cited by

  1. Abundance and species composition of non-geniculate coralline red algae epiphytic on the South African populations of the rocky shore seagrass Thalassodendron leptocaule M.C. Duarte, Bandeira & Romeiras vol.86, 2013, https://doi.org/10.1016/j.sajb.2013.02.173
  2. Comparison of spatial scale variability of shoot density and epiphytic leaf assemblages of Halophila stipulacea and Cymodocea nodosa on the Eastern Coast of Tunisia vol.154, pp.3, 2020, https://doi.org/10.1080/11263504.2019.1674399