DOI QR코드

DOI QR Code

Optimizing the binding activity of the AP2/ERF transcription factor with the GCC box element from Brassica napus by directed evolution

  • Jin, Xiao-Fen (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Zhu, Bo (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Peng, Ri-He (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Jiang, Hai-Hua (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Chen, Jian-Min (College of Life Science and Technology, Yangzhou University) ;
  • Zhuang, Jing (Life Science, Alberta Research Council) ;
  • Zhang, Jian (Life Science, Alberta Research Council) ;
  • Yao, Quan-Hong (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Xiong, Ai-Sheng (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences)
  • Received : 2010.06.30
  • Accepted : 2010.07.24
  • Published : 2010.08.31

Abstract

In this study, we cloned the ERF-B3 subfamily transcription factor gene BnaERF-B3-hy15 from Brassica napus L. Huyou15. This 600 bp gene encodes a 199 amino acid classic ethylene responsive factor (ERF), which shown no binding or very weak binding GCC box-binding activity by the yeast one-hybrid assay. We used gene shuffling and the yeast one-hybrid system to obtain three mutated sequences that can bind to the GCC box. Sequence analysis indicated that two residues, Gly156 in the AP2 domain and Phe62 at the N-terminal domain were mutated to arginine and serine, respectively. Changes of Gly156 to arginine and Phe62 to serine increased the GCC-binding activity of BnaERF-B3-hy15 and the alter of Gly156 to arginine changed the AP2-domain structure of BnaERF-B3-hy15.

Keywords

References

  1. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998-1009. https://doi.org/10.1006/bbrc.2001.6299
  2. Gutterson, N. and Reuber, T. L. (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7, 465-471. https://doi.org/10.1016/j.pbi.2004.04.007
  3. Brannigan, J. A. and Wilkinson, A. J. (2002) Protein engineering 20 years on. Nat. Rev. Mol. Cell Biol. 3, 964-970. https://doi.org/10.1038/nrm975
  4. Stemmer, W. P. C. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389-391. https://doi.org/10.1038/370389a0
  5. Dougherty, M. J. and Arnold, F. H. (2009) Directed evolution: new parts and optimized function. Curr. Opin. Biotech. 20, 486-491. https://doi.org/10.1016/j.copbio.2009.08.005
  6. Zhao, T. J., Liu, Y., Yan, Y. B., Feng, F., Liu, W. Q. and Zhou, H. M. (2007) Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus. FEBS Lett. 581, 3044-3050. https://doi.org/10.1016/j.febslet.2007.05.067
  7. Liu, Y., Zhao, T. J., Liu, J. M., Liu, W. Q., Liu, Q., Yan, Y. B., and Zhou, H. M. (2006) The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett. 580, 1303-1308. https://doi.org/10.1016/j.febslet.2006.01.048
  8. Zhu, J. K. (2001) Plant salt tolerance. Trends in Plant Sci. 6, 66-71. https://doi.org/10.1016/S1360-1385(00)01838-0
  9. Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781-803. https://doi.org/10.1146/annurev.arplant.57.032905.105444
  10. Li, F. L., Wu, X. Z., Tsang, E. and Cutler, A. J. (2005) Transcriptional profiling of imbibed Brassica napus seed. Genomics 86, 718-730. https://doi.org/10.1016/j.ygeno.2005.07.006
  11. Park, J. M., Park, C. J., Lee, S. B., Ham, B. K., Shin, R. and Paek, K. H. (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13, 1035-1046. https://doi.org/10.1105/tpc.13.5.1035
  12. Ohta, M., Ohme-Takagi, M. and Shinshi, H. (2000) Three ethhylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J. 22, 29-38. https://doi.org/10.1046/j.1365-313x.2000.00709.x
  13. Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H. and Ohme-Takagi, M. (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12, 393-404. https://doi.org/10.1105/tpc.12.3.393
  14. Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M. and Suzuki, M. (1998) A novel mode of DNA recognition by a ${\beta}-sheet$ revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17, 5484-5496. https://doi.org/10.1093/emboj/17.18.5484
  15. Okamuro, J. K., Caster, B., Villarroel, R., Montagu, M. V. and Jofuko, K. D. (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 94, 7076-7081. https://doi.org/10.1073/pnas.94.13.7076
  16. Hao, D. Y., Ohme-Takagi, M. and Sarai, A. (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF Domain) in plant. J. Biol. Chem. 273, 26857-26861. https://doi.org/10.1074/jbc.273.41.26857
  17. Morley, K. L., and Kazlauskas, R. J. (2005) Improving enzyme properties: when are closer mutations better? Trends Biotechnol. 23, 231-237. https://doi.org/10.1016/j.tibtech.2005.03.005
  18. Zhu, J. K. (2001) Plant salt tolerance. Trends in Plant Sci. 6, 66-71. https://doi.org/10.1016/S1360-1385(00)01838-0
  19. Grierson, D. and Slater, A. (1985) Gene expression in ripening tomato fruit. CRC Crit. Rev. Plant Sci. 3, 113-132. https://doi.org/10.1080/07352688509382206
  20. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  21. Zhuang, J., Cai, B., Peng, R. H., Zhu, B., Jin, X. F. and Xue, Y. (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem. Biophys. Res. Commun. 371, 468-474. https://doi.org/10.1016/j.bbrc.2008.04.087
  22. Xiong, A. S., Peng, R. H., Liu, J. G., Zhuang, J., Qiao, Y. S. and Xu, F. (2007) High efficiency and throughput system in directed evolution in vitro of reporter gene. Appl. Micro. Biotech. 74, 160-168. https://doi.org/10.1007/s00253-006-0659-0
  23. Chevray, P. M. and Nathans, D. (1992) Protein interaction cloning in yeast: Identification of mammalian proteins that react with the leucine zipper of Jun. Proc. Natl. Acad. Sci. U.S.A. 89, 5789-5793. https://doi.org/10.1073/pnas.89.13.5789
  24. Zhang, Y., Chen, C., Jin, X. F., Xiong, A. S., Peng, R. H., Hong, Y. H., Yao, Q. H. and Chen, J. M. (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep. 42, 486-492. https://doi.org/10.5483/BMBRep.2009.42.8.486
  25. Jin, X. F., Xiong, A. S., Peng, R. H., Liu, J. G., Gao, F., Chen, J. M. and Yao, Q. H. (2010) OsAREB1, an ABREbinding protein responding to ABA and glucose, has multiple functions in arabidopsis. BMB Rep. 43, 34-39. https://doi.org/10.5483/BMBRep.2010.43.1.034

Cited by

  1. Advances in directed molecular evolution of reporter genes vol.32, pp.2, 2012, https://doi.org/10.3109/07388551.2011.593503
  2. Arg156 in the AP2-Domain Exhibits the Highest Binding Activity among the 20 Individuals to the GCC Box in BnaERF-B3-hy15, a Mutant ERF Transcription Factor from Brassica napus vol.7, 2016, https://doi.org/10.3389/fpls.2016.01603
  3. Analysis of Brassica napus ESTs: gene discovery and expression patterns of AP2/ERF-family transcription factors vol.41, pp.1, 2014, https://doi.org/10.1007/s11033-013-2836-4
  4. Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress vol.290, pp.6, 2015, https://doi.org/10.1007/s00438-015-1061-3
  5. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis vol.71, 2017, https://doi.org/10.1016/j.compbiolchem.2017.09.004
  6. Expression and Function of a Modified AP2/ERF Transcription Factor from Brassica napus Enhances Cold Tolerance in Transgenic Arabidopsis vol.53, pp.2, 2013, https://doi.org/10.1007/s12033-012-9515-x
  7. A Rice OsAP23, Functioning as an AP2/ERF Transcription Factor, Reduces Salt Tolerance in Transgenic Arabidopsis vol.31, pp.6, 2013, https://doi.org/10.1007/s11105-013-0610-3