DOI QR코드

DOI QR Code

Derivation of Modified Anderson-Darling Test Statistics and Power Test for the Gumbel Distribution

Gumbel 분포형의 수정 Anderson-Darling 검정통계량 유도 및 기각력 검토

  • Shin, Hong-Joon (School of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Sung, Kyung-Min (School of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Heo, Jun-Haeng (School of Civil and Environmental Engineering, Yonsei Univ.)
  • 신홍준 (연세대학교 대학원 토목공학과) ;
  • 성경민 (연세대학교 대학원 토목공학과) ;
  • 허준행 (연세대학교 공과대학 토목공학과)
  • Received : 2010.07.06
  • Accepted : 2010.08.25
  • Published : 2010.09.30

Abstract

An important problem in frequency analysis is the estimation of the quantile for a certain return period. In frequency analysis an assumed probability distribution is fitted to the observed sample data to estimate the quantile at the upper tail corresponding to return periods which are usually much larger than the record length. In most cases, the selection of an appropriate probability distribution is based on goodness of fit tests. The goodness of fit test method can be described as a method for examining how well sample data agrees with an assumed probability distribution as its population. However it gives generally equal weight to differences between empirical and theoretical distribution functions corresponding to all the observations. In this study, the modified Anderson-Darling (AD) test statistics are provided using simulation and the power study are performed to compare the efficiency of other goodness of fit tests. The power test results indicate that the modified AD test has better rejection performances than the traditional tests. In addition, the applications to real world data are discussed and shows that the modified AD test may be a powerful test for selecting an appropriate distribution for frequency analysis when extreme cases are considered.

빈도해석에 있어서 중요한 문제는 특정 재현기간에 대한 수문량의 크기를 산정하는 것으로, 빈도해석에서는 일반적으로 관측기간보다 긴 재현기간에 해당하는 수문량의 크기를 산정하기 위해 가정된 확률분포형을 표본 자료에 적합시키게 된다. 따라서 적절한 확률분포형의 선정이 무엇보다 중요하며 이는 일반적으로 대상 자료로부터 얻어지는 경험적 빈도분포와 가정한 확률분포의 일치 정도를 판단하는 적합도 검정 방법을 이용하게 된다. 일반적으로 많이 사용되는 적합도검정 방법들은 모든 표본 자료들의 적합 정도를 동일하게 고려하기 때문에 극치사상의 크기 증가에 따른 영향은 반영하기 힘든 방법들이다. 따라서 본 연구에서는 모의실험을 통해 극치사상에 대하여 가중치를 주는 modified Anderson-Darling (AD) 검정 방법의 Gumbel 분포형에 대한 검정 통계량 한계값을 제시하였으며, 기존의 여러 적합도 검정 방법과의 기각력을 비교해 보고, 이를 실제 자료에 적용하여 그 결과를 살펴보았다. 그 결과 modified AD 검정 방법이 기존의 여러 가지 적합도 검정 방법보다도 기각력이 더 우수한 것으로 나타났으며, 기존의 적합도 검정 방법으로는 부족한 분포형 선정 기준의 부족한 부분을 어느 정도 보완해 줄 수 있을 것으로 판단되었다.

Keywords

References

  1. 건설교통부(2000). 수자원관리기법개발연구조사 보고서: 제1권 한국확률강우량도 작성.
  2. Ahmad, M.I., Sinclair, C.D., and Spurr, B.D. (1988). “Assessment of flood frequency models using empirical distribution function statistics.” Water Resources Research, Vol. 24, No. 8, pp. 1323-1328. https://doi.org/10.1029/WR024i008p01323
  3. Aho, M., Bain, L.J., and Engelhardt, M. (1985). “Goodness-of-fit tests for the Weibull distribution with unknown parameters and heavy censoring.” J. Stat. Comp. Simul., Vol. 21, pp. 213-225. https://doi.org/10.1080/00949658508810816
  4. Anderson, T.W., and Darling, D.A. (1952). “Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes.” Ann. Math. Stat., Vol. 23, pp.193-212. https://doi.org/10.1214/aoms/1177729437
  5. Arshad M., Rasool, M.T., and Ahmad, M.I. (2003). “Anderson Darling and modified Anderson Darling tests for generalized Pareto distribution.” Pakistan Journal of Applied Sciences, Vol. 3, No. 2, pp. 85-88. https://doi.org/10.3923/jas.2003.85.88
  6. Bush, J.G., Woodruff, B.W., Moore, A.H., and Dunne, E.J. (1983). “Modified Cramer von Mises and Anderson-Darling tests for Weibull distributions with unknown location and scale parameters.” Comm. Stat. Theory Meth., Vol. 12, No. 21, pp. 2465-2476. https://doi.org/10.1080/03610928308828613
  7. Chandra, M., Singpurwalla, N.D., and Stephens, M.A. (1981). “Kolmogorov statistics for tests of fit the extreme value and Weibull distributions.” Journal of the American Statistical Association, Vol. 76, No. 375, pp. 729-731. https://doi.org/10.2307/2287539
  8. Crown, J.S. (2000). “Percentage points for directional Anderon-Darling goodness-of-fit tests.” Commun. Statist.-Simula., Vol. 29, No. 2, pp. 523-532. https://doi.org/10.1080/03610910008813625
  9. Durbin, J. (1975). “Kolmogorov-Smirnov tests when parameters are estimated with applications to tests of exponentially and test on spacings.” Biometrica, Vol. 62, No. 1, pp. 5-22. https://doi.org/10.1093/biomet/62.1.5
  10. Green, J.R., and Hegazy, Y.A.S. (1976). “Powerful modified EDF goodness-of-fit tests.” Journal of the American Statistical Association, Vol. 71, pp. 204-209. https://doi.org/10.2307/2285770
  11. Gunbel, E.J. (1958). Statistics of Extremes. Columbia University Press, New York, NY.
  12. Heo, J., Kho, Y.W., Shin, H., Kim, S., and Kim, T. (2008). “Regression equations of probability plot correlation coefficient test statistics from several probability distributions.” Journal of Hydrology, Vol. 355, pp. 1-15. https://doi.org/10.1016/j.jhydrol.2008.01.027
  13. Lilliefors, H.W. (1967). “On the Kolmogorov-Smirnov test for normality with mean and variance unknown.” Journal of the American Statistical Association, Vol. 62, pp. 399-402. https://doi.org/10.2307/2283970
  14. Lilliefors, H.W. (1969). “On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown.” Journal of the American Statistical Association, Vol. 64, pp. 387-389. https://doi.org/10.2307/2283748
  15. Littell, R.D., McClave, J.T., and Offen, W.W. (1979). “Goodness-of-fit tests for the two parameter Weibull distribution.” Comm. Stat. Simul. Comp., Vol. 8, No. 3, pp. 257-269. https://doi.org/10.1080/03610917908812118
  16. Murthy, P.D.N., Xie, M., and Jiang, R. (2004). Weibull Models, Wiley, NJ, USA.
  17. Onoz, B., and Bayazit, M. (1995). “Best-fit distributions of largest available flood samples.” Journal of Hydrology, Vol. 167, pp. 195-208. https://doi.org/10.1016/0022-1694(94)02633-M
  18. Sinclair, C.D., Spurr, B.D., and Ahmad, M.I. (1990). “Modified Anderson Darling test.” Commun. Statist. -Theory Meth., Vol. 19, No. 10, pp. 3677-3686. https://doi.org/10.1080/03610929008830405
  19. Stephens, M.A. (1970). “Use of the Kolmogorov-Smirnov, Cramer von Mises and related statistics without extensive tables.” J. Roy. Stat. Soc., Vol. B, No. 32, pp. 115-122.
  20. Stephens, M.A. (1974). “EDF statistics for goodness of fit and some comparisons.” J. Amer. Stat. Ass., Vol. 69, pp. 730-737. https://doi.org/10.2307/2286009
  21. Stephens, M.A. (1976). “Asymptotic power of EDF statistics for exponentiality against gamma and Weibull alternatives.” Tech report No. 297, Dept. Stat. Stanford Univ.
  22. Sultan, A.M., and Khaleel, H.M. (2005). “A new modified goodness of fit tests for type 2 censored sample from normal population.” Mathematical and Computational Applications, Vol. 10, No. 2, pp. 165-177. https://doi.org/10.3390/mca10020165

Cited by

  1. Road Maintenance Planning with Traffic Demand Forecasting vol.18, pp.3, 2016, https://doi.org/10.7855/IJHE.2016.18.3.047
  2. The estimation of CO concentration in Daegu-Gyeongbuk area using GEV distribution vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.1001
  3. A Study on Safety Impacts for VMS Traffic Information vol.14, pp.1, 2015, https://doi.org/10.12815/kits.2015.14.1.022
  4. An Analysis of Safety Impacts of Variable Message Signage as Functions of Road Curve Radius vol.17, pp.5, 2015, https://doi.org/10.7855/IJHE.2015.17.5.047
  5. A Study on Empirical Distribution Function with Unknown Shape Parameter and Extreme Value Weight for Three Parameter Weibull Distribution vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.643
  6. Development of the Decision-Making System for National Highway Pavement Management vol.34, pp.2, 2014, https://doi.org/10.12652/Ksce.2014.34.2.0645
  7. A Study on the Estimation of the Extreme Quantile of Probability Distribution According to Skewness Coefficient and Sample Size vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.485