개에서 피부손상에 의한 표피내 칼슘이온 분포상

Visual Imaging of Calcium Ion Distribution in Acetone and Tape Stripping Damaged Canine Epidermis

  • Oh, Won-Seok (Neodin Veterinary Science Institute) ;
  • Lee, Keun-Woo (College of Veterinary Medicine, Kyungpook National University) ;
  • Oh, Tae-Ho (College of Veterinary Medicine, Kyungpook National University)
  • 심사 : 2010.05.25
  • 발행 : 2010.06.30

초록

본 연구의 목적은 개 피부장벽 손상모델을 실험적으로 구현하기 위해 개의 정상피부, 제모 된 피부 그리고 아세톤 및 테잎 스트리립핑에 의한 손상된 피부에서의 표피내 칼슘이온의 분포를 관찰하였다. 피부손상에 따른 표피의 칼슘이온 변화도는 화학적 표시자(Calcium Green-1)가 포함된 gel blotting을 적용하여 피부장벽손상 효과를 시간에 따라 형광현미경으로 관찰하였다. 아세톤 손상 후 3분 및 1시간에 표피와 모낭의 칼슘이온의 차이를 나타내는 형광도차는 보다 밝게 관찰된 후 48시간 후에 소실되었다. 이와는 대조적으로, 테잎스트립핑손상 후 3분 및 1시간의 표피 칼슘이온의 형광도차는 아세톤 손상에서보다 더 밝게 보였다가 48시간 후에 소실되었다. 본 실험상의 방법을 통해 피부 손상 방법에 따른 표피 칼슘이온의 가시적 이미지를 관찰할 수 있었고, 표피내 농도차이를 확인할 수 있었다. 따라서 본 화학표시자를 이용한 염색법은 개 피부장벽 복구기전에 대한 칼슘이온의 역할을 규명하는데 유용할 것으로 판단되며, 추후 표피칼슘이온 농도의 정량분석법에 관한 연구가 필요할 것으로 사료된다.

The purpose of this study is to establish experimental canine skin barrier disruption model, the study was designed to observe calcium ion in skin frozen tissue of canine skin and also the modulation of calcium ion distribution of normal skin with disrupted skin such as clipping, acetone, tape stripping damages according to time. To compare the changes of calcium ion gradient after damages, the distribution of calcium ion in the canine epidermis was visualized by blotting to gel containing chemical indicator (Calcium Green-1) with fluorescent microscope and the effects of skin barrier damages were examined according to time. Three mins and 1hr after acetone damage, the gradations of epidermis and hair follicle showed more radiant and disappeared after 48 hrs. On the contrary, 3mins and 1hr after tape stripping damage, the gradations showed more radiant than those of acetone damage, and these gradations were stabilized after 48 hrs. The method we presented here could show the visual image of the calcium ions in frozen tissue without further preparation, and it might be useful to investigate the role of calcium ion in the canine epidermal barrier recovery, however, it might be need further methodological improvement to get accurate quantitative information.

키워드

참고문헌

  1. Berardesca E, Pirot F, Singh M. Differences in stratum corneum ph gradient when comparing white caucasian and black african-american skin. Br J Dermatol 1998; 139: 855-857. https://doi.org/10.1046/j.1365-2133.1998.02513.x
  2. Bikle DD, Ratnam A, Mauro T, Harris J, Pillai S. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J Clin Invest 1996; 97: 1085-1093. https://doi.org/10.1172/JCI118501
  3. Chandra S, Smith DR, Morrison GH. Subcellular imaging by dynamic sims ion microscopy. Anal Chem 2000; 72: 104A- 114A.
  4. Clapham D. Calcium signaling. Cell 1995; 80: 259-268. https://doi.org/10.1016/0092-8674(95)90408-5
  5. Denda M, Fuziwara S, Inoue K. Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Invest Dermatol 2003; 121: 362-367. https://doi.org/10.1046/j.1523-1747.2003.12367.x
  6. Denda M, Hosoi J, Asida Y. Visual imaging of ion distribution in human epidermis. Biochem Biophys Res Commun 2000; 272: 134-137. https://doi.org/10.1006/bbrc.2000.2739
  7. Elias P, Menon G. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 1991; 24: 1-26.
  8. Elias PM, Ahn SK, Denda M, Brown BE, Crumrine D, Kimutai LK, Komuves L, Lee SH, Feingold KR. Modulations in epidermal calcium regulate the expression of differentiation- specific markers. J Invest Dermatol 2002; 119: 1128- 1136. https://doi.org/10.1046/j.1523-1747.2002.19512.x
  9. Elias PM, Nau P, Hanley K, Cullander C, Crumrine D, Bench G, Sideras-Haddad E, Mauro T, Williams ML, Feingold KR. Formation of the epidermal calcium gradient coincides with key milestones of barrier ontogenesis in the rodent. J Invest Dermatol 1998; 110: 399-404. https://doi.org/10.1046/j.1523-1747.1998.00151.x
  10. Fartasch M. Ultrastructure of the epidermal barrier after irritation. Microsc Res Tech 1997; 37: 193-199. https://doi.org/10.1002/(SICI)1097-0029(19970501)37:3<193::AID-JEMT4>3.0.CO;2-P
  11. Forslind B. Quantitative x-ray microanalysis of skin. Partile probe evaluation of the skin barrier function. Acta Derm Venereol 1987; 134: 1.
  12. Grubauer G, Elias PM, Feingold KR. Transdermal water loss: the signal for recovery of barrier structure and function. J Lipid Res 1989; 30: 323-333.
  13. Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR. Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Invest Dermatol 1992; 89: 530-538.
  14. Mao-Qiang M, Mauro T, Bench G, Warren R, Elias PM, Feingold KR. Calcium and potassium inhibit barrier recovery after disruption, independent of the type of insult in hairless mice. Exp Dermatol 1997; 6: 36-40. https://doi.org/10.1111/j.1600-0625.1997.tb00143.x
  15. Mauro T, Bench G, Sidderas-Haddad E, Feingold K, Elias P, Cullander C. Acute barrier perturbation abolishes the $ca2^+$ and $k^+$ gradients in murine epidermis: Quantitative measurement using pixe. J Invest Dermatol 1998; 111: 1198-1201. https://doi.org/10.1046/j.1523-1747.1998.00421.x
  16. Menon GK, Elias PM, Lee SH, Feingold KR. Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res 1992; 270: 503-512. https://doi.org/10.1007/BF00645052
  17. Menon GK, Feingold KR, Elias PM. Lamellar body secretory response to barrier disruption. J Invest Dermatol 1992; 98: 279-289. https://doi.org/10.1111/1523-1747.ep12497866
  18. Menon GK, Grayson S, Elias PM. Ionic calcium reservoirs in mammalian epidermis: Ultrastructural localization by ioncapture cytochemistry. J Invest Dermatol 1985; 84: 508-512. https://doi.org/10.1111/1523-1747.ep12273485
  19. Tanaka M, Zhen Y, Tagami H. Normal recovery of the stratum corneum barrier function following damage induced by tape stripping in patients with atopic dermatitis. Br J Dermatol 1997; 136: 966-967. https://doi.org/10.1111/j.1365-2133.1997.tb03946.x
  20. Yuspa S. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentration in vitro. J Cell Biol 1989; 109: 1207. https://doi.org/10.1083/jcb.109.3.1207
  21. Zhai H, Leow YH, Maibach HI. Human barrier recovery after acute acetone perturbation: An irritant dermatitis model. Clin Exp Dermatol 1998; 23: 11-13. https://doi.org/10.1046/j.1365-2230.1998.00310.x
  22. Zhai H, Poblete N, Maibach HI. Stripped skin model to predict irritation potential of topical agents in vivo in humans. Int J Dermatol 1998; 37: 386-389. https://doi.org/10.1046/j.1365-4362.1998.00231.x