Antioxidant Defenses and Physiological Changes in Olive Flounder (Paralichthys olivaceus) in Response to Oxidative Stress Induced by Elevated Water Temperature

고수온 환경에 의해 유도된 산화 스트레스에 대한 넙치의 항산화 작용과 생리적 변화

  • Shin, Hyun-Suk (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • An, Kwang-Wook (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Kim, Na-Na (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Choi, Cheol-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 신현숙 (한국해양대학교 해양환경.생명과학부) ;
  • 안광욱 (한국해양대학교 해양환경.생명과학부) ;
  • 김나나 (한국해양대학교 해양환경.생명과학부) ;
  • 최철영 (한국해양대학교 해양환경.생명과학부)
  • Received : 2010.01.21
  • Accepted : 2010.03.04
  • Published : 2010.03.31

Abstract

We determined oxidative stress caused by thermal stress in olive flounder Paralichthys olivaceus based on the altered-mRNA expression and enzymatic activity of two key antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), along with monitoring of several other biomarkers. When the fish were exposed to acute thermal change (from $20^{\circ}C$ to $25^{\circ}C$ and $30^{\circ}C$), the expression and activity of both enzymes were significantly higher at elevated temperatures ($25^{\circ}C$ and $30^{\circ}C$) than at $20^{\circ}C$. Lipid peroxidation (LPO) was also higher at $25^{\circ}C$ and $30^{\circ}C$ than at $20^{\circ}C$. In addition, the plasma $H_2O_2$ concentration was significantly increased by thermal stress. Furthermore, we investigated changes due to thermal stress by measuring levels of plasma alanine aminotransferase (AlaAT) and aspartate aminotrasferase (AspAT). Both were significantly increased by thermal stress. As an immune indicator, the lysozyme concentration was lower at $30^{\circ}C$ than at $20^{\circ}C$, indicating that thermal stress decreases immune function. Therefore, thermal stress could induce oxidative stress and suppress immune function and can cause physiological stress.

고수온 환경 ($25^{\circ}C$$30^{\circ}C$)에 노출시킨 넙치의 산화 스트레스 정도를 알아보기 위하여 넙치의 간 조직에서 항산화 효소 [superoxide dismutase (SOD)와 catalase(CAT)] mRNA의 발현량 및 그 활성을 측정한 결과, $20^{\circ}C$ 대조구보다 $25^{\circ}C$$30^{\circ}C$ 실험구에서 증가하는 경향을 보였다. 또한 지질 과산화 지표로 사용되는 lipid peroxidation(LPO)을 측정한 결과, $25^{\circ}C$$30^{\circ}C$ 실험구에서 증가하는 경향을 나타내었다. LPO의 증가는 SOD 및 CAT의 증가와 밀접한 관련이 있으며, 체내의 $H_O_2$ 농도 또한 $25^{\circ}C$$30^{\circ}C$ 실험구에서 증가하는 것으로 보아 고수온 환경이 넙치의 산화 스트레스를 유발하고 있는 것으로 사료된다. 고수온 환경에 노출시킨 넙치의 혈중 alanine aminotransferase (AlaAT)와 aspartate aminotransferase (AspAT) 값을 측정 한 결과, AlaAT와 AspAT 모두 유의적으로 증가하는 경향을 보였다. 또한 면역 지표로 사용되는 lysozyme 활성도가 $20^{\circ}C$ 대조구보다 $30^{\circ}C$ 실험구에서 유의적으로 낮은 값을 나타낸 점으로 보아, 고수온 환경에 노출된 넙치에서는 간 세포의 손상뿐만 아니라 면역력 또한 저해되고 있는 것으로 사료된다. 고수온 환경에 노출시킨 넙치에서 항산화 효소인 SOD와 CAT mRNA 발현량 및 활성이 증가하였을 뿐만 아니라 활성산소와 LPO 값 또한 증가된 점으로 보아, 고수온 환경은 넙치의 체내에서 산화 스트레스를 유발시키는 동시에 면역 기능을 저해시키고 있는 것으로 사료된다.

Keywords

References

  1. Abele, D., R. Burlando, A Viarengo and H.O. Portner. 1998. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Naeella concinna. Comp. Biochem. Physiol., B 120: 425-435.
  2. An, M.I. and C.Y. Choi. 2010. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: Effects on hemolymph and biochemical parameters. Comp. Biochem. Physiol., B 155: 34-42.
  3. Bagnyukova, T.V., V.I. Lushchak, K.B. Storey and V.I. Lushchak. 2007. Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to $23{^{\circ}C}$. J. Therm. Biol., 32: 227-234. https://doi.org/10.1016/j.jtherbio.2007.01.004
  4. Basha, S.P. and AR. Usha. 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxical. Environ. Saf., 56: 218-221. https://doi.org/10.1016/S0147-6513(03)00028-9
  5. Bly, J.E. and W. Clem. 1992. Temperature and teleost immune functions. Fish Shellfish Immunol., 2: 159-171. https://doi.org/10.1016/S1050-4648(05)80056-7
  6. Boveris, A., E. Cadenas and A.O.M. Stoppani. 1976. Role of. ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J., 156: 435-444. https://doi.org/10.1042/bj1560435
  7. Bowden, T.J. 2008. Modulation of the immune system of fish by their environment. Fish Shellfish Immunol., 25: 373-383. https://doi.org/10.1016/j.fsi.2008.03.017
  8. Chance, B., H. Sies and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59: 527-605. https://doi.org/10.1152/physrev.1979.59.3.527
  9. Cheng, A.C., S.A. Cheng, Y.Y. Chen and J.C. Chen. 2009. Effects of temperature change on the innate cellular and humoral immune responses of orange-spotted grouper Epinephelus coioides and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol., 26: 768-772. https://doi.org/10.1016/j.fsi.2009.03.011
  10. Chien, L.T. and D.F. Hwang. 2001. Effects of thermal stress and vitamin C on lipid peroxidation and fatty acid composition in the liver of thornfish Terapon jarbua. Comp. Biochem. Physiol., B 128: 91-97. https://doi.org/10.1016/S1096-4959(00)00299-2
  11. Choi, C.V., B.H. Min, P.G. Jo and Y.J. Chang. 2007. Molecular cloning of PEPCK and stress response of black porgy(Acanthopagrus schlegeli) to increased temperature in freshwater and seawater. Gen. Comp. Endocrinol., 152: 47-53. https://doi.org/10.1016/j.ygcen.2007.02.019
  12. Choi, C.Y., K.W. An, H.S. Shin, M.I. An and P.G. Jo. 2008a. Changes of cytochrome P4501A mRNA expression and physiology responses in the olive flounder, Paraliehthys olivaeeus, exposed to benzo[a]pyrene. Mar. Biol. Res., 4: 470-476. https://doi.org/10.1080/17451000802232890
  13. Choi, C.Y., K.W. An, Y.K. Choi, P.G. Jo and B.H. Min. 2008b. Expression of warm temperature acclimationrelated protein 65-kDa(Wap65) mRNA, and physiological changes with increasing water temperature in black porgy, Acanthopagrus schlegeli. J. Exp. Zool., A 309: 206-214.
  14. Collazos, M.E., C. Barriga and E. Ortega. 1995. Effect of high summer temperatures upon granulocyte phagocytic function of the tench (Tinca tinca, L.). Comp. Immun. Microbiol. Infect. Dis., 18: 115-121. https://doi.org/10.1016/0147-9571(95)98852-9
  15. Djordjevic, J., G. Cvijic, T. Vuckovic and V. Davidovic. 2004. Effect of heat and cold exposure on the rat brain monoamine oxidase and antioxidative enzyme activities. J. Therm. Biol., 29: 861-864. https://doi.org/10.1016/j.jtherbio.2004.08.070
  16. Eo, J. and K.J. Lee. 2008. Effect of dietary ascorbic acid on growth and non-specific immune responses of tiger puffer, Takifugu rubripes. Fish Shellfish Immunol., 25: 611-616. https://doi.org/10.1016/j.fsi.2008.08.009
  17. Esterbauer, H., R.J. Schaur and H. Zoliner. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 11: 81-128. https://doi.org/10.1016/0891-5849(91)90192-6
  18. Halliwell, B. and J.M.C. Gutteridge. 1989. Free radicals in Biology and Medicine. Clarendon Press, Oxford, pp. 96-98.
  19. Harari, P.M., D.J. Fuller and E.W. Gerner. 1989. Heat shock stimulates polyamine oxidation by two distinct mechanisms in mammalian cell cultures. Int. J. Radiat. Oncol. Biol. Phys., 16: 451-457. https://doi.org/10.1016/0360-3016(89)90341-6
  20. Harris, J. and D.V. Bird. 2000. Modulation of the fish immune system by hormones. Vet. Immunol. Immunopathol., 77: 163-176. https://doi.org/10.1016/S0165-2427(00)00235-X
  21. Hochachka, P.W. and G.N. Somera. 1984. Biochemical Adaptation. Princeton University Press, Princeton, New Jersey, 538pp.
  22. Kashiwagi, A, K. Kashiwagi, M. Takase, H. Hanada and M. Nakamura. 1997. Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Comp. Biochem. Physiol., B 118: 499-503. https://doi.org/10.1016/S0305-0491(97)00216-2
  23. Kim, M.O. and E.B. Phyllis. 1998. Oxidative stress in critical care: is antioxidant supplementation beneficial? J. Am. Diet. Assoc., 98: 1001-1008. https://doi.org/10.1016/S0002-8223(98)00230-2
  24. Liu, Y., W.N. Wang, A.L. Wang, J.M. Wang and R.Y. Sun. 2007. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei(Boone, 1931) exposed to acute salinity changes. Aquaculture, 265: 351-358. https://doi.org/10.1016/j.aquaculture.2007.02.010
  25. Lushchak, V.I. and T.V. Bagnyukova. 2006a. Temperature increase results in oxidative stress in goldfish tissues: 1. Indices of oxidative stress. Comp. Biochem. Physiol., C 143: 30-35.
  26. Lushchak, V.I. and T.V. Bagnyukova. 2006b. Temperature increase results in oxidative stress in goldfish tissues: 2. Antioxidant and associated enzymes. Comp. Biochem. Physiol., C 143: 36-41.
  27. Maule, A.G., R.A Tripp, S.L. Kaattari and C.B. Schreck. 1989. Stress alters immune function and disease resistance in Chinook salmon (Oncorhynchus tshawytscha). J. Endocrinol., 120: 135-142. https://doi.org/10.1677/joe.0.1200135
  28. McFarland, V.A., L.S. Inouye, C.H. Lutz, A.S. Jarvis, J.U. Clarke and D.D. McCant. 1999. Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch. Environ. Contam. Toxicol., 37: 236-241. https://doi.org/10.1007/s002449900510
  29. Nouroozzadeh, J., J. Tajaddinisarmadi and S.P. Wolff. 1994. Measurement of plasma hydroperoxide concentrations by ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal. Biochem., 200: 403-409.
  30. Pan, C.H., Y.H. Chien and B. Hunter. 2003. The resistance to ammonia stress of Penaeus monodon Fabricius juvenile fed diets supplemented with astaxanthin, J. Exp. Mar. Biol. Ecol., 297: 107-118. https://doi.org/10.1016/j.jembe.2003.07.002
  31. Pandey, S., S. Parvez, I. Sayeed, R. Haques, B. Bin-Hafeez and S. Raisuddin. 2003. Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (BI & Schn.), Sci. Total Environ., 309: 105-115. https://doi.org/10.1016/S0048-9697(03)00006-8
  32. Parihar, M.S., A.K. Dubey, T. Javeri and P. Prakash. 1996. Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature. J. Therm. Biol., 21: 323-330. https://doi.org/10.1016/S0306-4565(96)00016-2
  33. Pickering, A.D. and T.G. Pottinger. 1989. Stress response and disease resistance in sa1monid fish: effects of chronic elevation of plasma cortisol. Fish Physiol. Biochem., 7: 253-258. https://doi.org/10.1007/BF00004714
  34. Schreck, C.B., C.S. Bradford, M.S. Fitzpatrick and R. Patino. 1989. Regulation of the interrenal of fishes: non-classical control mechanism. Fish Physiol. Biochem., 7: 259-265. https://doi.org/10.1007/BF00004715
  35. Vaglio, A and C. Landriscina. 1999. Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium. Ecotoxicol. Environ. Saf., 43: 111-116. https://doi.org/10.1006/eesa.1999.1778
  36. Wang, F., H. Yang, F. Gao and G. Liu. 2008. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus. Compo Biochem. Physiol., A 151: 491-498. https://doi.org/10.1016/j.cbpa.2008.06.024
  37. Wheeler, C, J. Salzman, N. Elsayed, S. Omaye and D. Korte. 1990. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal. Biochem., 184: 193-199. https://doi.org/10.1016/0003-2697(90)90668-Y