DOI QR코드

DOI QR Code

Plant Growth Promotion of Calystegia soldanella and Ischaemum anthephoroides by the Strain Penicillium citrinum KACC43900

Penicillium citrinum KACC43900에 의한 갯메꽃과 갯쇠보리의 생장촉진활성

  • You, Young-Hyun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Hwang, Jeong-Sook (Department of Biology, College of National Sciences, Kyungpook National University) ;
  • Yoon, Hyeok-Jun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Khan, Sumera Afzal (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Rim, Soon-Ok (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Bae, Jeong-Jin (Department of Biology, College of National Sciences, Kyungpook National University) ;
  • Choo, Yeon-Sik (Department of Biology, College of National Sciences, Kyungpook National University) ;
  • Lee, In-Jung (Department of Agromony, Kyungpook National University) ;
  • Kong, Won-Sik (Department of Herbal Crop Research, National Institute of Horiticultural & Herbal Science, RDA) ;
  • Lee, Byung-Moo (Department of Agricultural Bioresource, National Academy of Agricultural Science, RDA) ;
  • Kim, Jong-Guk (Department of Life Sciences and Biotechnology, Kyungpook National University)
  • Received : 2010.07.02
  • Accepted : 2010.08.23
  • Published : 2010.09.30

Abstract

Coastal sand-dune plants can survive very effectively with the help of various microbes, especially ecto- and endomycorrihizae. Penicillium citrinum KACC43900 was screened according to growth promoting activity on sand-dune plants Calystegia soldanella and Ischaemum anthephoroides. In this study, coastal sand-dune plants were treated with a fungal culture filtrate of endophytic fungus P. citrinum KACC43900 to confirm the promotion of plant growth. C. soldanella and I. anthephoroides were used as representative coastal sand-dune plants, and their shoot length, plant length, and dry weight were analyzed. The shoot lengths of control C. soldanella and I. anthephoroides were 8.60 cm and 8.12 cm, and those of samples treated with fungal culture filtrates of C. soldanella and I. anthephoroides for 20 days were 16.30 cm and 10.56 cm, respectively. The plant lengths of control C. soldanella and I. anthephoroides were 14.90 cm and 14.80 cm, and those of samples treated with fungal culture filtrates of C. soldanella and I. anthephoroides for 20 days were 24.06 cm and 17.06 cm, respectively. The dry weight of C. soldanella and I. anthephoroides treated with fungal culture filtrates of C. soldanella and I. anthephoroides for 20 days were 0.163 g and 0.032 g, respectively. It was shown that the growth of shoots in C. soldanella and I. anthephoroides was promoted, 89.54% and 29.60%, by culture filtrate of P. citrinum KACC43900.

해안사구식물은 다양한 미생물과 외생균근과 내생균근의 도움으로 효과적으로 생존할 수 있다. Penicillium citrinum KACC43900를 이용하여, 해안사구식물인 갯메꽃과 갯쇠보리에 대해 생장 촉진효과를 조사하였으며, 지상부길이, 식물체길이 그리고 식물체건량을 분석하였다. P. citrinum KACC43900 배양액을 20일간 처리 시, 지상부길이는 16.30 cm와 10.56 cm이었으며, 대조구는 8.60 cm과 8.12 cm인 것을 확인 하였다. 마찬가지로 P. citrinum KACC43900 배양액을 20일간 처리 시, 갯메꽃과 갯쇠보리의 식물체길이는 24.06 cm와 17.06 cm인 것을 확인 하였고, 대조구는 14.90 cm과 14.80 cm인 것을 확인 하였다. 갯메꽃의 식물체건량은 배양여과액 처리의 경우, 0.163g이었고 대조구가 0.123 g이었다. 그리고 갯쇠보리의 식물체건량은 배양여과액 처리의 경우, 0.032 g이었으며 대조구가 0.027 g이었다. 갯메꽃과 갯쇠보리의 지상부길이는 P. citrinum KACC43900의 배양여과액에 의해 89.54%와 29.60% 촉진되었다.

Keywords

References

  1. Basiacik, K. S. and N. Aksoz. 2004. Optimization of carbon nitrogen ratio for production of gibberellic acid by Pseudomonas sp. Pol. J. Microbiol. 53, 20-117.
  2. Bottini, R., F. Cassan, and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65, 497-503.
  3. Carter, R. W. G. 1991. Near future sea level impacts on coastal dunes landscapes. Landscape Ecol. 6, 29-39. https://doi.org/10.1007/BF00157742
  4. Choi, W. Y., K. S. Sin, I. J. Lee, I. K. Rhee, J. H. Lee, and J. G. Kim. 2004. Isolation of gibberellin-producing Penicillium spp. from the root of Lindera obtusiloba and Vaccinium koreanum. Korean J. Mycol. 32, 16-22. https://doi.org/10.4489/KJM.2004.32.1.016
  5. Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, I. K. Rhee, J. B. Kwon, and J. G. Kim. 2005. Isolation of giberellins-producing fungi from the of several Sesamum Indicum plants. J. Microbiol. Biotechnol. 15, 22-28.
  6. Garia-Mora, M. R., J. B. Gallego-Fernandez, and F. Garcia-Novo. 2000. Plant diversity as a suitable tool for coastal dune vulnerability assessment. J. Coastal Res. 16, 990-995.
  7. Hedden, P. and A. l. Phillips. 2000. Gibberellin metabolism: new insights revealed by the genes. Trands in Plant Sci. 5, 523-530. https://doi.org/10.1016/S1360-1385(00)01790-8
  8. Kawaide, H. and T. Sassa. 1993. Accumulation of gibberellin A1 and the metabolism of gibberellin A9 to gibberellin $A_1$ in a Phaeosphaeria sp. L 487 culture. Biosci. Biotech. Biochem. 57, 1403-1405. https://doi.org/10.1271/bbb.57.1403
  9. Khan, S. A., M. Hamayun, S. O. Rim, I. J. Lee, J. C. Seu, Y. S. Choo, I. N. J, S. D. Kim, I. K. Lee, and J. G. Kim. 2008. Isolation of endophytic fungi capable of plant growth promotion from monocots inhibited in the coastal sand dunes of Korea. J. Life Sci. 18, 1355-1359. https://doi.org/10.5352/JLS.2008.18.10.1355
  10. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, I. J. Lee, and J. G. Kim. 2009. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 25, 829-833. https://doi.org/10.1007/s11274-009-9981-x
  11. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, J. C. Seo, Y. S. Choo, I. J. Lee, S. D. Kim, I. K. Rhee, and J. G. Kim. 2009. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol. Lett. 31, 283-287. https://doi.org/10.1007/s10529-008-9862-7
  12. Khan, S. A., M. Hamayun, H. J. Yoon. H. Y. Kim. S. J. Suh, S. K. Hwang, J. M. Kim, I. J. Lee, Y. S. Choo, U. H. Yoon, W. S. Kong, B. M. Lee, and J. G. Kim. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8, 231. https://doi.org/10.1186/1471-2180-8-231
  13. Kawanabe, Y., H. Yamane, T. Murayama, N. Takahashi, and T. Nakamura. 1983. Identification of gibberellin A3 in mycelia Neurospora Crassa. Agric. Biol. Chem. 47, 1693-1694. https://doi.org/10.1271/bbb1961.47.1693
  14. Lewis, N. M. 2003. Twenty years of gibberellin research. Nat. Prod. Rep. 20, 49-69. https://doi.org/10.1039/b007744p
  15. Opelt, K. and G. Berg. 2004. Diversity and antagonistic potential of bateria associated with bryophytes from nutrient poor habitats of baltic sea coast. Appl. Microbiol. 70, 6569-6579. https://doi.org/10.1128/AEM.70.11.6569-6579.2004
  16. Rachev, R., V. Gancheva, S. Bojkova, C. Christov, and T. Zafirova. 1997. Gibberellin biosynthesis by Fusarium moniliforme in the presence of hydrophobic resin Amberlite XAD-2. Bulg. J. Plant Physi. 12, 24-31.
  17. Rim, S. O., J. H. Lee, S. A. Khan, I. J. Lee, I. K. Rhee, K. S. Lee, and J. G. Kim. 2007. Isolation and identification of fungal strans producing gibberellins from the root of plants. Korean J. Microbiol. biotechnol. 35, 357-363.
  18. Rim, S. O., J. H. Lee, I. J. Lee, I. K. Rhee, and J. G. Kim. 2007. Optimazation of gibberellin production by Fusarium prolifertum KGL0401 and its involvement in waito-c rice growth. J. Life Sci. 17, 120-124. https://doi.org/10.5352/JLS.2007.17.1.120
  19. Rim, S. O., J. H. Lee, W. Y. Choi, S. K. Hwang, S. J. Suh, I. J. Lee, I. K. Rhee, and J. G. Kim. 2005. Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J. Microbiol. Biotechnol. 15, 809-814.
  20. Williams, A. T. 1998. Integrated management methods monitoring environmental changes in coastal dune ecosystem. pp. 642-653, In Baether, K. G., H. Barth, M. Bohle-Carbonell, C. Fragakis, E. Lipiatou, P. Martin, G. Ollier, and M. Weydart (eds.), Porc. 3rd European Marine Science and Technology Conference, Brusells, European Commission 2.