DOI QR코드

DOI QR Code

Experimental Infection for the Neutralization of White Spot Syndrome Virus (WSSV) in Wild Captured Sand Shrimp, Crangon affinis

자연산 자주새우(Crangon affinis)에서 흰반점바이러스(WSSV)의 neutralization을 위한 인위감염(experimental infection)

  • Received : 2010.06.14
  • Accepted : 2010.08.17
  • Published : 2010.09.30

Abstract

White spot syndrome virus (WSSV) is one of the most virulent viral agents threatening the penaeid shrimp culture industry. This study was carried out to evaluate the susceptibility of the sand shrimp, Crangon affinis, to WSSV as an alternative experimental model. WSSV caused 100% mortality in C. affinis within 7 days after experimental infection by immersion. Based on challenge studies, it was confirmed that C. affinis could be a potential host in WSSV transmission. Also, the neutralization of WSSV was carried out using an antiserum raised against recombinant envelop protein rVP466 to evaluate the WSSV infection mechanism. A constant amount of WSSV (at $1{\times}10^4$ diluted stocks) was incubated with various amounts of antiserum and then mixed to 20 l reservoir for the immersion challenge of C. affinis for neutralization. At 5 days post challenge, the shrimp in the positive control immersed in the immersion reservoir containing WSSV stock showed 100% mortality. The shrimps challenged with the 3 different mixtures of WSSV and rVP466 antiserum (1:0.1, 1:0.5 and 1:1) showed 100%, 68.8% and 68.8% mortality at 14 days post challenge, respectively. These results indicated that the antiserum raised against rVP466 could block WSSV infection in C. affinis. Therefore, this study confirmed that C. affinis can be naturally infected by WSSV as another potential host and that C. affinis can be used as an alternative experimental animal instead of penaeid shrimps.

흰반점바이러스(WSSV)는 새우양식산업에 막대한 경제적 손실을 일으키는 가장 치명적인 바이러스성 질병 원인체 중 하나이다. 본 연구는 인위적인 실험모델로서 WSSV에 대한 자주새우(Crangon affinis)의 감수성을 확인하고자 실험을 수행하였다. WSSV가 희석된 수조 내에서 침지법으로 감염된 새우는 감염 후 7일째에 100% 누적폐사율을 보여 자주새우가 WSSV에 대해 매우 높은 감수성을 갖고 있음을 확인하였다. 또한 재조합단백질인 rVP466에 대한 항혈청의 중화효과를 확인하기 위해 항혈청과 반응시킨 바이러스액($1{\times}10^4$ 배로 희석된 WSSV)을 이용하여 침지법으로 자주새우에 대해 공격실험(challenge test)을 수행하였다. 실험 결과, WSSV로 challenge한 감염대조구(positive control)의 새우들은 감염 후 5일째에 100% 폐사하였으며, WSSV와 rVP466 항혈청을 1:0.01, 1:0.1, 1:1로 혼합한 액으로 challenge한 새우들은 감염 후 14일째에 각각 100%, 68.8%, 68.8%의 누적폐사율을 보였다. 따라서 본 연구 결과는 연안서식종인 자주새우가 양식장으로부터 배출된 WSSV에 의해 자연상태에서 감염 될 수 있는 가능성과 함께 항혈청에 대한 중화효과를 나타냄으로써 겨울철 저수온기에 WSSV 감염을 위한 대체 실험생물로서의 유용성을 확인하였다.

Keywords

References

  1. Burton, D. R. 2002. Antibodies, viruses and vaccines. Natl. Rev. Immunol. 2, 706-713. https://doi.org/10.1038/nri891
  2. Chou, H. Y., C. Y. Huang, C. H. Wang, H. C. Chiang, and C. F. Lo. 1995. Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis. Aquat. Org. 23, 165-173. https://doi.org/10.3354/dao023165
  3. Ha, Y. M., Y. I. Kim, K. H. Kim, and S. K. Kim. 2008. Neutralization of white spot syndrome virus (WSSV) for Penaeus chinensis by antiserum raised against recombinant VP19. J. Environ. Biol. 29, 513-517.
  4. Harlow, E. and D. Lane. 1988. Antibodies: a laboratory manual. NY, USA: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  5. Herold, B. C., D. WuDunn, N. Soltys, and P. G. Spear. 1991. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J. Virol. 65, 1090-1098.
  6. Huang, C. H., X. B. Zhang, Q. S. Lin, X. Xu, Z. H. Hu, and C. L. Hew. 2002. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelop protein VP466. Mol. Cell Proteomics 1, 223-231. https://doi.org/10.1074/mcp.M100035-MCP200
  7. Musthaq, S. S., K. Yoganandhan, R. Sudhakaran, S. R. Kumar, and A. S. Hameed. 2006. Neutralization of white spot syndrome virus of shrimp by antiserum raised against recombinant VP28. Aquaculture 253, 98-104. https://doi.org/10.1016/j.aquaculture.2005.07.032
  8. Poo, H. R., J. J. Song, S. P. Hong, Y. H. Choi, S. W. Yun, J. H. Kim, S. C. Lee, S. G. Lee, and M. H. Sung. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-$\alpha$. Biotechnol. Lett. 24, 1185-1189. https://doi.org/10.1023/A:1016107230825
  9. Tsai, J. M., H. C. Wang, J. H. Leu, H. H. Hsiao, A. H. J. Wang, G. H. Kou, and C. F. Lo. 2004. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J. Virol. 78, 11360-11370. https://doi.org/10.1128/JVI.78.20.11360-11370.2004
  10. Van Hulten, M. C. W., J. Witteveldt, M. Snippe, and J. M. Vlak. 2001. White spot syndrome virus envelop protein VP28 is involved in the systemic infection of shrimp. Virology 285, 228-233. https://doi.org/10.1006/viro.2001.0928
  11. Volkman, L. E. and P. A. Goldsmith. 1985. Mechanism of neutralization of budded Autographs californica nuclear polyhedrosis virus by a monoclonal antibody: Inhibition of entry by adsorptive endocytosis. Virology 143, 185-195. https://doi.org/10.1016/0042-6822(85)90107-2
  12. Wang, Y. C., C. F. Lo, P. S. Chang, and G. H. Kou. 1998. Experimental infection of white spot baculovirus in some cultured and wild decapods in Taiwan. Aquaculture 164, 221-231. https://doi.org/10.1016/S0044-8486(98)00188-4
  13. Witteveldt, J., C. C. Cifuentes, J. M. Vlak, and Van M. C. W. Hulten. 2004. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J. Virol. 78, 2057-2061. https://doi.org/10.1128/JVI.78.4.2057-2061.2004
  14. Wu, J. L., T. Nishioka, K. Mori, T. Nishizawa, and K. A. Muroga. 2002. A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immunol. 13, 391-403. https://doi.org/10.1006/fsim.2002.0414
  15. Wu, W., L. Wang, and X. Zhang. 2005. Identification of white spot syndrome virus (WSSV) envelop proteins involved in shrimp infection. Virology 332, 578-583. https://doi.org/10.1016/j.virol.2004.12.011