참고문헌
- Bathe, K. (2003), ADINA System, ADINA R&D Inc.
- Bebiano, R., Silvestre, N. and Camotim, D. (2008), "Local and global vibration of thin-walled members subjected to compression and non-uniform bending", J. Sound. Vib., 315(3), 509-535. https://doi.org/10.1016/j.jsv.2008.02.036
- Camotim, D., Silvestre, N., Gon alves, R. and Dinis, P. B. (2004), "GBT analysis of thin-walled members: new formulation and applications", Thin-Walled Structures: Recent Advances and Future Trends in Thin-Walled Structures Technology, J. Loughlan (ed.), Canopus Publishing, Bath, 137-168.
- Camotim, D., Silvestre, N. Gon alves, R. and Dinis, P. B. (2006), "GBT-based structural analysis of thin-walled members: overview, recent progress and future developments", Adv. Eng. Struct., Mechanics & Construction, M Pandey, WC Xie, L Xu (eds.), Springer, Dordrecht, 187-204.
- Camotim, D., Silvestre, N. and Bebiano, R. (2007), "GBT local and global vibration analysis of thin-walled members", Dynamics of Plated Structures: Analysis and Design, NE Shanmugam, CM Wang (eds.), Woodhead Publishing Limited, Cambridge, 36-76.
- Camotim, D., Basaglia, C. and Silvestre, N. (2010), "Global buckling analysis of thin-walled steel frames: a state-of-the-art report", Thin. Wall. Struct. (in press)
- Davies, J. M. (1998), "Generalised beam theory (GBT) for coupled instability problems", Coupled instabilities in metal structures: theoretical and design aspects, J Rondal (ed.), Springer-Verlag, 151-223, Austria.
- Gon alves, R. and Camotim, D. (2004), "GBT local and global buckling analysis of aluminium and stainless steel columns", Comput. Struct., 82(17-19), 1473-484. https://doi.org/10.1016/j.compstruc.2004.03.043
- Goncalves, R. and Camotim, D. (2007), "Thin-walled member plastic bifurcation analysis using generalized beam theory", Adv. Eng. Softw., 38(8-9), 637-646. https://doi.org/10.1016/j.advengsoft.2006.08.027
- Goncalves, R., Camotim, D. and Ritto-Corr a, M. (2008), "Steel and composite bridge analysis using generalized beam theory", Steel Bridges - Advanced Solutions & Technologies (Proceedings of 7th International Conference on Steel Bridges - Guimaraes), P Cruz, LS Silva, F Schroter (eds.), ECCS, Coimbra, 377-389.
- Goncalves, R., Dinis, P. B. and Camotim, D. (2006), "Box girder bridge analysis using generalized beam theory", Proceedings of SDSS 2006 International Colloquium on Stability and Ductility of Steel Structures (SDSS 2006 Lisboa), D Camotim, N Silvestre, PB Dinis (ed.), IST Press, Lisbon, 1027-1036.
- Goncalves, R., Dinis, P. B. and Camotim, D. (2009), "GBT formulation to analyse the first-order and buckling behaviour of thin-walled members with arbitrary cross-sections", Thin. Wall. Struct., 47(5), 583-600. https://doi.org/10.1016/j.tws.2008.09.007
- Goncalves, R., Le Grognec, P. and Camotim, D. (2010a), "GBT-based semi-analytical solutions for the plastic bifurcation of thin-walled members", Int. J. Solids Struct., 47(1), 34-50. https://doi.org/10.1016/j.ijsolstr.2009.09.013
- Goncalves, R., Ritto-Corr a, M. and Camotim, D. (2010b), "A new approach to the calculation of cross-section deformation modes in the framework of Generalized Beam Theory", Computational Mechanics, in press.
- Johnson, R. P. and Anderson, D. (2004). Designer's Guide to EN 1994-1-1, Thomas Telford, London.
- Moller, R. (1982), Zur Berechnung Prismatischer Strukturen mit Beliebigem nicht Formtreuem Querschnitt, Institut fur Statik, Technische Hochschule Darmstadt.
- Murray, N. W. (1986), Introduction to the Theory of Thin-Walled Structures, Clarendon Press, Oxford.
- Saal, G. (1974), Ein beitrag zur Schwingungsberechnung von Dunnwandigen, Prismatischen Schalentragwerken mit Unverzweigtem Querschnitt, Ph.D. Dissertation, Technische Hochschule Darmstadt, Germany. (in German)
- Schafer, B. W. (2003), CUFSM 2.6, Finite Strip Buckling Analysis of Thin-Walled Members, Civil Engineering Department, Johns Hopkins University, Baltimore. (www.ce.jhu.edu/bschafer)
- Schardt, R. (1989), Verallgemeinerte Technische Biegetheorie, Springer-Verlag, Berlin. (in German)
- Schardt, R. (1994), "Generalized beam theory-an adequate method for coupled stability problems", Thin. Wall. Struct., 19(2-4), 161-180. https://doi.org/10.1016/0263-8231(94)90027-2
- Schardt, R. and Heinz, D. (1991), "Vibrations of thin-walled prismatic structures under simultaneous static load using generalized beam theory", Structural Dynamics, W. Kratzig et al. (eds.), Balkema, Rotterdam, 921-927.
- Silvestre, N. and Camotim, D. (2003), "Non-linear generalised beam theory for cold-formed steel members", Int. J. Struct. Stab. Dy., 3(4), 461-490. https://doi.org/10.1142/S0219455403001002
- Silvestre, N. and Camotim, D. (2004), "Distortional buckling formulae for cold-formed steel C and Z section members: part I -derivation", Thin. Wall. Struct., 42(11), 1567-1597. https://doi.org/10.1016/j.tws.2004.05.001
피인용 문헌
- A distortional semi-discretized thin-walled beam element vol.62, 2013, https://doi.org/10.1016/j.tws.2012.07.011
- A direct approach for the evaluation of the conventional modes within the GBT formulation vol.74, 2014, https://doi.org/10.1016/j.tws.2013.09.008
- GBT-Based Vibration Analysis Using the Exact Element Method 2017, https://doi.org/10.1142/S0219455418500682
- G BTul 2.0 − A second-generation code for the GBT-based buckling and vibration analysis of thin-walled members vol.124, 2018, https://doi.org/10.1016/j.tws.2017.12.002
- Generalised Beam Theory for composite beams with longitudinal and transverse partial interaction vol.22, pp.10, 2017, https://doi.org/10.1177/1081286516653799
- Distortional solutions for loaded semi-discretized thin-walled beams vol.50, pp.1, 2012, https://doi.org/10.1016/j.tws.2011.08.013
- A physically non-linear GBT-based finite element for steel and steel-concrete beams including shear lag effects vol.90, 2015, https://doi.org/10.1016/j.tws.2015.01.010
- A one-dimensional higher-order theory with cubic distortional modes for static and dynamic analyses of thin-walled structures with rectangular hollow sections vol.227, pp.9, 2016, https://doi.org/10.1007/s00707-016-1634-1
- A GBT Model for the Analysis of Composite Steel–Concrete Beams with Partial Shear Interaction vol.4, 2015, https://doi.org/10.1016/j.istruc.2015.10.002
- An analytical approach for the cross-sectional analysis of generalised beam theory vol.167, pp.7, 2014, https://doi.org/10.1680/stbu.12.00057
- A cross-section analysis procedure to rationalise and automate the performance of GBT-based structural analyses vol.92, 2015, https://doi.org/10.1016/j.tws.2015.02.017
- A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes vol.19, pp.8, 2014, https://doi.org/10.1177/1081286513493107
- GBT-Based Buckling Analysis Using the Exact Element Method vol.17, pp.10, 2017, https://doi.org/10.1142/S0219455417501255
- Generalised Beam Theory (GBT) for composite beams with partial shear interaction vol.99, 2015, https://doi.org/10.1016/j.engstruct.2015.05.025
- On distortion of symmetric and periodic open-section thin-walled members vol.94, 2015, https://doi.org/10.1016/j.tws.2015.04.018
- GBT-based finite element to assess the buckling behaviour of steel–concrete composite beams vol.107, 2016, https://doi.org/10.1016/j.tws.2016.06.005
- Determination of load distribution factors of steel–concrete composite box and I-girder bridges using 3D finite element analysis vol.19, pp.2, 2018, https://doi.org/10.1080/13287982.2018.1452330
- Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement vol.3, pp.6, 2012, https://doi.org/10.12989/eas.2012.3.6.889
- A visco-elastic GBT-based finite element for steel-concrete composite beams vol.145, pp.None, 2019, https://doi.org/10.1016/j.tws.2019.106440
- Distortional effect on global buckling and post-buckling behaviour of steel box beams vol.35, pp.6, 2020, https://doi.org/10.12989/scs.2020.35.6.717
- Finite Elements for Higher Order Steel-Concrete Composite Beams vol.11, pp.2, 2021, https://doi.org/10.3390/app11020568
- Instances of mixed buckling and post-buckling of steel RHS beams vol.190, pp.None, 2021, https://doi.org/10.1016/j.ijmecsci.2020.106013