DOI QR코드

DOI QR Code

Steel-concrete composite bridge analysis using generalised beam theory

  • Goncalves, Rodrigo (UNIC, Departamento de Engenharia Civil, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa) ;
  • Camotim, Dinar (ICIST/IST, Departamento de Engenharia Civil e Arquitectura, Universidade Tecnica de Lisboa)
  • 투고 : 2010.04.13
  • 심사 : 2010.05.27
  • 발행 : 2010.05.25

초록

This paper reports recent developments concerning the application of Generalised Beam Theory (GBT) to the structural analysis of steel-concrete composite bridges. The potential of GBT-based semi-analytical or finite element-based analyses in this field is illustrated/demonstrated by showing that both accurate and computationally efficient solutions may be achieved for a wide range of structural problems, namely those associated with the bridge (i) linear (first-order) static, (ii) vibration and (iii) lateral-torsional-distortional buckling behaviours. Several illustrative examples are presented, which concern bridges with two distinct cross-sections: (i) twin box girder and (ii) twin I-girder. Allowance is also made for the presence of discrete box diaphragms and both shear lag and shear connection flexibility effects.

키워드

참고문헌

  1. Bathe, K. (2003), ADINA System, ADINA R&D Inc.
  2. Bebiano, R., Silvestre, N. and Camotim, D. (2008), "Local and global vibration of thin-walled members subjected to compression and non-uniform bending", J. Sound. Vib., 315(3), 509-535. https://doi.org/10.1016/j.jsv.2008.02.036
  3. Camotim, D., Silvestre, N., Gon alves, R. and Dinis, P. B. (2004), "GBT analysis of thin-walled members: new formulation and applications", Thin-Walled Structures: Recent Advances and Future Trends in Thin-Walled Structures Technology, J. Loughlan (ed.), Canopus Publishing, Bath, 137-168.
  4. Camotim, D., Silvestre, N. Gon alves, R. and Dinis, P. B. (2006), "GBT-based structural analysis of thin-walled members: overview, recent progress and future developments", Adv. Eng. Struct., Mechanics & Construction, M Pandey, WC Xie, L Xu (eds.), Springer, Dordrecht, 187-204.
  5. Camotim, D., Silvestre, N. and Bebiano, R. (2007), "GBT local and global vibration analysis of thin-walled members", Dynamics of Plated Structures: Analysis and Design, NE Shanmugam, CM Wang (eds.), Woodhead Publishing Limited, Cambridge, 36-76.
  6. Camotim, D., Basaglia, C. and Silvestre, N. (2010), "Global buckling analysis of thin-walled steel frames: a state-of-the-art report", Thin. Wall. Struct. (in press)
  7. Davies, J. M. (1998), "Generalised beam theory (GBT) for coupled instability problems", Coupled instabilities in metal structures: theoretical and design aspects, J Rondal (ed.), Springer-Verlag, 151-223, Austria.
  8. Gon alves, R. and Camotim, D. (2004), "GBT local and global buckling analysis of aluminium and stainless steel columns", Comput. Struct., 82(17-19), 1473-484. https://doi.org/10.1016/j.compstruc.2004.03.043
  9. Goncalves, R. and Camotim, D. (2007), "Thin-walled member plastic bifurcation analysis using generalized beam theory", Adv. Eng. Softw., 38(8-9), 637-646. https://doi.org/10.1016/j.advengsoft.2006.08.027
  10. Goncalves, R., Camotim, D. and Ritto-Corr a, M. (2008), "Steel and composite bridge analysis using generalized beam theory", Steel Bridges - Advanced Solutions & Technologies (Proceedings of 7th International Conference on Steel Bridges - Guimaraes), P Cruz, LS Silva, F Schroter (eds.), ECCS, Coimbra, 377-389.
  11. Goncalves, R., Dinis, P. B. and Camotim, D. (2006), "Box girder bridge analysis using generalized beam theory", Proceedings of SDSS 2006 International Colloquium on Stability and Ductility of Steel Structures (SDSS 2006 Lisboa), D Camotim, N Silvestre, PB Dinis (ed.), IST Press, Lisbon, 1027-1036.
  12. Goncalves, R., Dinis, P. B. and Camotim, D. (2009), "GBT formulation to analyse the first-order and buckling behaviour of thin-walled members with arbitrary cross-sections", Thin. Wall. Struct., 47(5), 583-600. https://doi.org/10.1016/j.tws.2008.09.007
  13. Goncalves, R., Le Grognec, P. and Camotim, D. (2010a), "GBT-based semi-analytical solutions for the plastic bifurcation of thin-walled members", Int. J. Solids Struct., 47(1), 34-50. https://doi.org/10.1016/j.ijsolstr.2009.09.013
  14. Goncalves, R., Ritto-Corr a, M. and Camotim, D. (2010b), "A new approach to the calculation of cross-section deformation modes in the framework of Generalized Beam Theory", Computational Mechanics, in press.
  15. Johnson, R. P. and Anderson, D. (2004). Designer's Guide to EN 1994-1-1, Thomas Telford, London.
  16. Moller, R. (1982), Zur Berechnung Prismatischer Strukturen mit Beliebigem nicht Formtreuem Querschnitt, Institut fur Statik, Technische Hochschule Darmstadt.
  17. Murray, N. W. (1986), Introduction to the Theory of Thin-Walled Structures, Clarendon Press, Oxford.
  18. Saal, G. (1974), Ein beitrag zur Schwingungsberechnung von Dunnwandigen, Prismatischen Schalentragwerken mit Unverzweigtem Querschnitt, Ph.D. Dissertation, Technische Hochschule Darmstadt, Germany. (in German)
  19. Schafer, B. W. (2003), CUFSM 2.6, Finite Strip Buckling Analysis of Thin-Walled Members, Civil Engineering Department, Johns Hopkins University, Baltimore. (www.ce.jhu.edu/bschafer)
  20. Schardt, R. (1989), Verallgemeinerte Technische Biegetheorie, Springer-Verlag, Berlin. (in German)
  21. Schardt, R. (1994), "Generalized beam theory-an adequate method for coupled stability problems", Thin. Wall. Struct., 19(2-4), 161-180. https://doi.org/10.1016/0263-8231(94)90027-2
  22. Schardt, R. and Heinz, D. (1991), "Vibrations of thin-walled prismatic structures under simultaneous static load using generalized beam theory", Structural Dynamics, W. Kratzig et al. (eds.), Balkema, Rotterdam, 921-927.
  23. Silvestre, N. and Camotim, D. (2003), "Non-linear generalised beam theory for cold-formed steel members", Int. J. Struct. Stab. Dy., 3(4), 461-490. https://doi.org/10.1142/S0219455403001002
  24. Silvestre, N. and Camotim, D. (2004), "Distortional buckling formulae for cold-formed steel C and Z section members: part I -derivation", Thin. Wall. Struct., 42(11), 1567-1597. https://doi.org/10.1016/j.tws.2004.05.001

피인용 문헌

  1. A distortional semi-discretized thin-walled beam element vol.62, 2013, https://doi.org/10.1016/j.tws.2012.07.011
  2. A direct approach for the evaluation of the conventional modes within the GBT formulation vol.74, 2014, https://doi.org/10.1016/j.tws.2013.09.008
  3. GBT-Based Vibration Analysis Using the Exact Element Method 2017, https://doi.org/10.1142/S0219455418500682
  4. G BTul 2.0 − A second-generation code for the GBT-based buckling and vibration analysis of thin-walled members vol.124, 2018, https://doi.org/10.1016/j.tws.2017.12.002
  5. Generalised Beam Theory for composite beams with longitudinal and transverse partial interaction vol.22, pp.10, 2017, https://doi.org/10.1177/1081286516653799
  6. Distortional solutions for loaded semi-discretized thin-walled beams vol.50, pp.1, 2012, https://doi.org/10.1016/j.tws.2011.08.013
  7. A physically non-linear GBT-based finite element for steel and steel-concrete beams including shear lag effects vol.90, 2015, https://doi.org/10.1016/j.tws.2015.01.010
  8. A one-dimensional higher-order theory with cubic distortional modes for static and dynamic analyses of thin-walled structures with rectangular hollow sections vol.227, pp.9, 2016, https://doi.org/10.1007/s00707-016-1634-1
  9. A GBT Model for the Analysis of Composite Steel–Concrete Beams with Partial Shear Interaction vol.4, 2015, https://doi.org/10.1016/j.istruc.2015.10.002
  10. An analytical approach for the cross-sectional analysis of generalised beam theory vol.167, pp.7, 2014, https://doi.org/10.1680/stbu.12.00057
  11. A cross-section analysis procedure to rationalise and automate the performance of GBT-based structural analyses vol.92, 2015, https://doi.org/10.1016/j.tws.2015.02.017
  12. A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes vol.19, pp.8, 2014, https://doi.org/10.1177/1081286513493107
  13. GBT-Based Buckling Analysis Using the Exact Element Method vol.17, pp.10, 2017, https://doi.org/10.1142/S0219455417501255
  14. Generalised Beam Theory (GBT) for composite beams with partial shear interaction vol.99, 2015, https://doi.org/10.1016/j.engstruct.2015.05.025
  15. On distortion of symmetric and periodic open-section thin-walled members vol.94, 2015, https://doi.org/10.1016/j.tws.2015.04.018
  16. GBT-based finite element to assess the buckling behaviour of steel–concrete composite beams vol.107, 2016, https://doi.org/10.1016/j.tws.2016.06.005
  17. Determination of load distribution factors of steel–concrete composite box and I-girder bridges using 3D finite element analysis vol.19, pp.2, 2018, https://doi.org/10.1080/13287982.2018.1452330
  18. Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement vol.3, pp.6, 2012, https://doi.org/10.12989/eas.2012.3.6.889
  19. A visco-elastic GBT-based finite element for steel-concrete composite beams vol.145, pp.None, 2019, https://doi.org/10.1016/j.tws.2019.106440
  20. Distortional effect on global buckling and post-buckling behaviour of steel box beams vol.35, pp.6, 2020, https://doi.org/10.12989/scs.2020.35.6.717
  21. Finite Elements for Higher Order Steel-Concrete Composite Beams vol.11, pp.2, 2021, https://doi.org/10.3390/app11020568
  22. Instances of mixed buckling and post-buckling of steel RHS beams vol.190, pp.None, 2021, https://doi.org/10.1016/j.ijmecsci.2020.106013