DOI QR코드

DOI QR Code

Structural, Morphological, and Optical Properties of AlN Thin Films Subjected to Oxygen Flow Ratio

산소 유량비 변화에 따른 AlN 박막의 구조, 표면 및 광학적 특성

  • Cho, Shin-Ho (Center for Green Fusion Technology and Department of Electronic Materials Engineering, Silla University) ;
  • Kim, Moon-Hwan (Department of Automotive Mechanical Engineering, Silla University)
  • 조신호 (녹색융합기술센터, 신라대학교 공과대학 전자재료공학과) ;
  • 김문환 (신라대학교 공과대학 자동차기계공학과)
  • Received : 2010.05.25
  • Accepted : 2010.07.09
  • Published : 2010.07.30

Abstract

We have investigated the effects of oxygen flow ratios on the structural, morphological, and optical properties of AlN thin films grown by using radio-frequency reactive magnetron sputtering. The AlN thin films were deposited at $300^{\circ}C$ of substrate temperature, and the reactive gas were supplied with both nitrogen and oxygen. The oxygen flow ratio was varied by controlling the amount of oxygen with respect to the total mixed gases, 0%, 10%, 15%, 20%, 25%, and 30%. The structural, morphological, and optical properties of the deposited AlN thin films were examined by using X-ray diffractometer, scanning electron microscopy, and ultraviolet-visible spectrophotometer. The AlN thin film grown at 10% of oxygen flow ratio indicated an average transmittance of 91.3% in the wavelength range of 350~1,100 nm and an optical band gap of 4.30 eV. The experimental results suggest that AlN thin films can be deposited optionally by varying the oxygen flow ratio.

산소 유량비 변화에 따른 라디오파 반응성 마그네트론 스퍼터링 방법으로 성장된 AlN 박막의 구조, 표면 및 광학적 특성을 조사하였다. AlN 박막은 기판 온도 $300^{\circ}C$에서 성장되었으며, 반응성 가스로 질소와 산소 가스를 사용하였다. 산소 유량비는 공급되는 질소와 산소 혼합 가스양에 대한 산소의 유량비로 선택하여 0%, 10%, 15%, 20%, 25%, 30%로 제어하였다. 성장된 AlN 박막의 구조, 표면과 광학적 특성은 각각 X-선 회절장치, 전자주사현미경과 자외선-가시광 분광기를 사용하여 조사하였다. 산소 유량비 10%로 증착된 AlN 박막은 350~1,100 nm 파장 영역에서 평균 91.3%의 투과율과 4.30 eV의 광학 밴드갭 에너지를 나타내었다. 실험 결과는 산소 유량비를 변화시킴으로써 AlN 박막을 선택적으로 성장시킬 수 있음을 제시한다.

Keywords

References

  1. M. Akiyama, K. Nagao, N. Ueno, H. Tateyama,and T. Yamada, Vacuum 74, 699 (2004). https://doi.org/10.1016/j.vacuum.2004.01.052
  2. F. Benedic, M. B. Assouar, P. Kirsch, D. Moneger, O. Brinza, O. Elmazria, P. Alnot, and A. Gicquel, Diamond Relat. Mater. 17, 804 (2008). https://doi.org/10.1016/j.diamond.2007.10.015
  3. X. He, S. Yang, K. Tao, and Y. Fan, Mater. Chem. Phys. 51, 199 (1997). https://doi.org/10.1016/S0254-0584(97)80295-7
  4. J. Zhu, D. Zhao, W. B. Luo, Y. Zhang, and Y. R. Li, J. Cryst. Growth 310, 731 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.147
  5. K. Dovidenko, S. Oktyabrsky, and J. Narayan, J. Appl. Phys. 79, 2439 (1996). https://doi.org/10.1063/1.361172
  6. V. Lebedev, B. Schroter, G. Kipshidze, and W. Richter, J. Cryst. Growth 207, 266 (1999). https://doi.org/10.1016/S0022-0248(99)00375-9
  7. Q. X. Guo, K. Yahata, T. Tanaka, M. Nishio, and H. Ogawa, J. Cryst. Growth 257, 123 (2003). https://doi.org/10.1016/S0022-0248(03)01565-3
  8. H. Cheng and P. Hing, Surface Coating Technol. 167, 297 (2003). https://doi.org/10.1016/S0257-8972(02)00923-4
  9. R. S. Naik, R. Reif, J. J. Lutsky, and C. G. Sodini, J. Electrochem. Soc. 146, 691 (1999). https://doi.org/10.1149/1.1391664
  10. 조신호, 한국진공학회지 18, 377 (2009).
  11. K. Abe, S. Nonomura, S. Kobayashi, M. Ohkubo, T. Gotoh, M. Nishio, S. Nitta, S. Okamoto, and Y. Kanemitsu, J. Non-Cryst. Solids 277, 1096 (1998).
  12. R. Rodriguez-Clemente, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand, and A. Figueras, J. Cryst. Growth 133, 59 (1993). https://doi.org/10.1016/0022-0248(93)90103-4
  13. 손영국, 황동현, 조신호, 한국진공학회지 16, 267 (2007).

Cited by

  1. Investigation of Structural and Optical Characteristics of In2Se3Thin Films Fabricated by Thermal Annealing vol.21, pp.3, 2012, https://doi.org/10.5757/JKVS.2012.21.3.136