DOI QR코드

DOI QR Code

EBG Structure Using Bridge Line in the Signal Transmission Plane

신호 전달 평면의 브릿지 라인을 이용한 EBG 구조

  • Kim, Byung-Ki (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Ha, Jung-Rae (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, June-Sang (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Bae, Hyeon-Ju (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kwon, Jong-Hwa (Electronics and Telecommunications Research Institute) ;
  • Nah, Wan-Soo (School of Information and Communication Engineering, Sungkyunkwan University)
  • 김병기 (성균관대학교 정보통신공학과) ;
  • 하정래 (성균관대학교 정보통신공학과) ;
  • 이준상 (성균관대학교 정보통신공학과) ;
  • 배현주 (성균관대학교 정보통신공학과) ;
  • 권종화 (한국전자통신연구원) ;
  • 나완수 (성균관대학교 정보통신공학과)
  • Accepted : 2010.07.02
  • Published : 2010.07.31

Abstract

In this paper, we propose a new EBG structure that the two unit cells are connected by the bridge line in signal transmission plane. The SSN of the power plane is reduced effectively by via holes and bridge lines connecting the unit cells. The superior signal transfer characteristic is shown between the signal lines in the signal transmission plane. The proposed EBG structure contains 1.2 GHz cut-off frequency and less than -30 dB suppression in the 8.3 GHz broad bandwidth. In addition, To improve the SI(Signal Integrity) in signal transmission plane keeping the same bandstop frequency range, the optimized location of the reference plane is proposed.

본 논문에서는 EBG(Electromagnetic Band Gap) 구조에 존재하는 두 단위 셀을 신호 전달 평면상의 브릿지 라인으로 연결하는 새로운 형태의 EBG 구조를 제안하였다. 이와 같은 구조를 갖는 EBG는 단위 셀을 연결하는 비아 홀과 브릿지 라인으로 인해 전원면에서 SSN(Simultaneous Switching Noise)를 효과적으로 차단하였으며, 또한 신호 평면상에서 존재하는 신호선들 사이에서는 우수한 신호 전달 특성을 보였다. 제안된 구조의 EBG는 특정 사이즈에서 차단 주파수 1.2 GHz, 저지 대역폭은 8.3 GHz로 넓은 주파수 대역에서 -30 dB 이하의 저지 대역특성을 나타내었다. 또한 광대역의 저지 대역폭을 유지하면서 신호 평면상에 위치한 신호선이 우수한 신호 전달 특성을 가질 수 있는 전원면/접지면의 위치를 최종적으로 제안하였다.

Keywords

References

  1. Madhavan Swaminathan, A. Ege Engin, Power Integrity Modeling and Design for Semiconductors and System, Prentice Hall, 2007.
  2. David M. Pozar, Microwave Engineering, 3rd Ed., John Wiley and Sons, Inc., 2005.
  3. Stephen H. Hall, Garrett W. Hall, and James A. Mc-Call, High-speed Digital System Design, John Wiley & Sons, Inc., 2000.
  4. R. Senthintan, J. Price, Simultaneous Switching Noise of CMOS Devices and Systems, Norwell, MA: Kluwer, 1994.
  5. Jongbae Park, Hyunsoo Kim, Youchul Jeong, Jingook Kim, Junso Park, Donggun Kam, and Joungho Kim, "Modeling and measurement of simultaneous switching noise coupling through signal via transition", IEEE Trans. Advanced Packaging, vol. 29, pp. 548-559, no. 3, Aug. 2006. https://doi.org/10.1109/TADVP.2006.872996
  6. Jinwoo Choi, Vinu Govind, Rohan Mandrekar, Sunanda Janagama, and Madhavan Swaminathan, "Noise reduction and design methodology in mixed-signal systems with alternating impedance electromagnetic bandgap(AI-EBG) structure", Microwave Symposium Digest 2005 IEEE MTT-S, pp. 849-852, 2005. https://doi.org/10.1109/MWSYM.2005.1516751
  7. Tzong-Lin Wu, Chien-Chung Wang, Yen-Hui Lin, Ting-Kuang Wang, and G. Chang, "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits", Microwave and Wireless Components Letters, vol. 15, pp. 174-176, Mar. 2005. https://doi.org/10.1109/LMWC.2005.844216
  8. Jongwoon Yoo, Jongmin Kim, Jong-Hwa Kwon, Ki-Jae Song, and Wansoo Nah, "Miniaturized electromagnetic band-gap structure to suppress simultaneous switching noise", Antennas, Propagation and EM Theory ISAPE 2008, pp. 694-697, 2008.
  9. O. M. Ramahi, B. Mohajer-Iravani, J. Qin, S. Shahparnia, and T. Kamgaing, "EMI suppression and switching noise mitigation in packages and boards using electromagnetic band gap structures", Signals, Systems and Electronics, pp. 271-274, Jul. 2007.