DOI QR코드

DOI QR Code

Synthesis of Poly(vinyl acetate) Using Supercritical Carbon Dioxide and Subsequent Preparation of Poly(vinyl alcohol)

초임계이산화탄소를 이용한 폴리비닐아세테이트의 합성과 그로부터 폴리비닐알코올의 제조

  • Choe, Woo-Hyuk (School of Display and Chemical Engineering, Yeungnam University) ;
  • Pham, Quang Long (School of Display and Chemical Engineering, Yeungnam University) ;
  • Shim, Jae-Jin (School of Display and Chemical Engineering, Yeungnam University)
  • 최우혁 (영남대학교 디스플레이화학공학부) ;
  • 팜쿠앙롱 (영남대학교 디스플레이화학공학부) ;
  • 심재진 (영남대학교 디스플레이화학공학부)
  • Received : 2010.02.26
  • Accepted : 2010.06.28
  • Published : 2010.06.30

Abstract

Vinyl acetate(VAc) was dispersion-polymerized using supercritical carbon dioxide that has many environmental advantages. To get poly(vinyl acetate) (PVAc) of larger molecular weights from conventional emulsion polymerization, VAc was polymerized at temperatures between 333.15 and 343.15 K and pressures between 20 and 40 MPa with initiator (0.5 ~ 5% of monomer) and silicone-based stabilizer (1 ~ 10% of monomer) for 2 ~ 50 hr. The resulting PVAc was analyzed to see the variations in the yield and the molecular weight. The final product of this research, PVA (poly(vinyl alcohol)), was prepared from PVAc by saponification. The effect of saponification conditions on the yield and the molecular weight of polymer were also studied.

본 연구에서는 여러 가지 친환경적인 장점을 가지고 있는 초임계이산화탄소를 이용하여 비닐아세테이트 (vinyl acetate, VAc)를 분산중합하였다. 일반적인 유화중합에서보다 더 큰 분자량의 폴리비닐아세테이트(poly(vinyl acetate), PVAc)를 더 높은 수율로 생성시키고자 온도를 333.15 ~ 343.15 K, 압력을 20 ~ 40MPa, 개시제를 0.5 ~ 5%, 실리콘계 안정제를 1 ~ 10%, 반응시간을 2 ~ 50 시간으로 변화시켜 가면서 초임계이산화탄소 내에서 VAc를 반응시킨 후 생성되는 PVAc의 수율과 분자량 변화를 알아보았다. 그리고 최종 목표물인 폴리비닐알코올(poly(vinyl alcohol, PVA))를 PVAc로부터 합성하기 위해 비누화를 시키고 비누화 조건이 PVA의 분자량에 미치는 영향을 검토하였다.

Keywords

References

  1. Lyoo, W. S., Lee, S. G., and Lee, C. J., "Preparation of High Molecular Weight Atactic Poly(vinyl alcohol) by the Low Temperature Suspension Polymerization of Vinyl Acetate," Polymer (Korea), 20(6), 1004-1013 (1996).
  2. Malten F. L., "Encyclopedia of Polymer Science and Technology," Mark. H. F., Bikales, N. M., Overberger, C. G., Menges, G., and Kroschwitz, J. I., Eds., Vol. 17, John Wiley and Sons, New York, 1985, pp.167-180 and p.188.
  3. Toyoshima, K, "Properties of Poly(vinyl alcohol) Films," in Finch, C. A., ed., "Polyvinyl Alcohol," John Wiley and Sons, New York, 1973, pp.339-388.
  4. Kim, S. G., Lee, W. S., Jo, S. M., Kim, B. C., Lyoo, W. S., and Han, J. R., "Preparation and Physical Properties of Poly(vinyl alcohol) Prepared by Using the Low-Temperature 2,2'-Azobis(2,4-dimethylvaleronitrile) Initiator," J. Korean Fiber Soc., 36(5), 354-360 (1999)
  5. Russumm, J. P., Barbre. N. D., Jones, C. W., and Schork, F. J., "Mini-emulsion Reversible Addition Fragmentation Chain Transfer Polymerization of Vinyl Acetate," J. Polym. Sci. Part A: Polym. Chem., 43, 2188-2192 (2005). https://doi.org/10.1002/pola.20681
  6. Wu, X. Q., and Schork, F. J., "Kinetics of Miniemulsion Polymerization of Vinyl Acetate with Nonionic and Anionic Surfactants," J. Appl. Polym. Sci. 81, 1691-1699 (2001). https://doi.org/10.1002/app.1601
  7. Lyoo, W. S., Kwak, J. W., Choi, K. H., and Noh, S. K., "Preparation of High Molecular Weight Poly(vinyl alcohol) with High Yield by Emulsion Polymerization of Vinyl Acetate Using 2,2'-Azobis(2-amidinopropane) Dihydrochloride," J. Appl. Polym. Sci. 94, 2356-2362 (2004). https://doi.org/10.1002/app.20731
  8. Gomez-Cisneros, M., Trevino, M. E., Peralta, R. D., Rabelero, M., Mendizabal, E., Puig, J. E., Cesteros, C., and Lopez, R. G., "Surfactant Concentration Effects on the Microemulsion Polymerization of Vinyl Acetate," Polym. 46, 2900-2907 (2005). https://doi.org/10.1016/j.polymer.2005.02.044
  9. Lyoo, W. S., and Ha, W. S., "Synthesis of High Molecular Weight Poly(vinyl alcohol)," J. Korean Fiber Soc., 33(2), 156-165 (1996).
  10. Friis, N. and Nyhagen, L., "Kinetic Study of the Emulsion Polymerization of Vinyl Acetate," J. Appl. Polym. Sci., 17(8), 2311-2327 (1973). https://doi.org/10.1002/app.1973.070170802
  11. Flory, P. J., Principles of Polymer Chemistry, Comell University Press, Ithaca, 1953, pp.106-161.
  12. Kendall, J. L., Canelas, D. A., Young, J. L., and DeSimone, J. M., "Polymerization in Supercritical Carbon Dioxide," Chem. Rev., 99, 543-563 (1999). https://doi.org/10.1021/cr9700336
  13. Canelas, D. A., Betts, D. E., DeSimone, J. M., Yates, M. Z., and Johnston, K. P., "Poly(vinyl acetate) and Poly(vinyl acetate-co-ethylene) Latexes vis Dispersion Polymerizations in Carbon Dioxide," Macromolecules, 31(20), 6745-6805 (1998).
  14. Rindfleisch, F., Becker, R., and Hergeth, W.-D., "Vinyl Acetate Dispersion Polymerization in Supercritical Carbon Dioxide," Polym. Mater. Sci. Eng., 80, 518-519 (1999).
  15. Park, J.-Y., and Shim, J.-J., "Emulsion Stability of PMMA Particles Formed by Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide," J. Supercrit. Fluids, 27, 207-307 (2003).
  16. Baek, S.-M., Noh, S.-K, Lyoo, W. S., and Shim, J.-J., "Preparation of Poly(Vinyl Acetate) in the Presence of Supercritical Carbon Dioxide," Clean Tech., 12(4), 171-197 (2006).
  17. Nakajima, A., and Sakurada, I., "Molecular-weight Distribution and Degree of Branching for Polyvinyl Acetates Obtained under Various Conditions of Polymerization,"Kobunshi Kagaku, 11, 110-116 (1954). https://doi.org/10.1295/koron1944.11.110
  18. Naito, R., "Poly(vinyl alcohol) Solution. IV. Viscosity Measurements on Poly(vinyl alcohol) Solution in Dimethylsulfoxide," Kobunshi Kagaku, 15, 597-604 (1958). https://doi.org/10.1295/koron1944.15.597
  19. Beuermann, S., Buback, M., and Nelke, D., "Pressure Dependence of the Propagation Rate Coefficient kp for Vinyl Acetate Polymerizations in Bulk and in Solution of Fluid $CO_2$," Macromolecules, 34(19), 6637-6640 (2001). https://doi.org/10.1021/ma0104682