Cross-layer Design of Routing and Link Capacity Extension for QoS in Communication Networks

통신망 QoS를 위한 라우팅과 용량 증설의 계층간 최적화 기법

  • 신봉석 (LIG 넥스원 통신연구센터) ;
  • 이현관 (연세대학교 전기전자공학과 무선자원최적화 연구실) ;
  • 박정민 (연세대학교 전기전자공학과 무선자원최적화 연구실) ;
  • 김동민 (연세대학교 전기전자공학과 무선자원최적화 연구실) ;
  • 김성륜 (연세대학교 전기전자공학과 무선자원최적화 연구실) ;
  • 이상일 (국방과학연구소) ;
  • 안명길 (국방과학연구소)
  • Received : 2009.10.26
  • Accepted : 2010.12.03
  • Published : 2010.12.31

Abstract

This paper considers the cost minimization problem to satisfy QoS (Quality of Service) requirements for a given network, in particular when communication resources to each link can be additionally assigned. For the purpose of quantifying QoS requirements such as data transfer delay and packet loss, we introduce the cost function considering both the link utilization factor and the additionally assigned resource. To minimize this cost function, we firstly formulate a Basic Capacity Planning (BCP) problem, a special case of Network Utility Maximization (NUM). We show that the solution of this BCP problem cannot be optimal via a counter example. In this paper, we suggest the cross-layer design of both additionally assigned resource and routing path, whose initial values are set to the result of BCP problem. This cross-layer design is based on a heuristic approach which presents an effective way to plan how much communication resources should be added to support the QoS requirements in future. By simulation study, we investigate the convergence of the cost function in a more general network topology as well as in a given simple topology.

본 논문에서는 사용자의 QoS (Quality of Service) 만족을 위해 할당하는 통신 자원에 대한 비용을 최소화하는 기법을 제안한다. 전송 지연이나 손실과 같이 사용자의 QoS를 결정짓는 요소들은 링크 사용률에 의존하게 되므로 링크 사용률에 따른 비용함수를 정의한다. 우선 네트워크 효용 최대화 (Network Utility Maximization) 문제로부터 기본적인 용량 계획 문제를 만들고, 하나의 토폴로지를 예로 들어 기본적인 용량 계획 문제의 해법이 최적의 해법을 제시하지 못한다는 것을 증명한다. 기본적인 용량 계획 문제의 해법을 초기 값으로 설정하고 라우팅과 용량 증설의 계층간 최적화 기법을 통하여 최적의 용량 계획 방법을 제시한다. 이 용량 계획 방법은 점차 증가하고 있는 평균 트래픽 양을 고려했을 때, 어떤 링크에 얼마만큼의 추가 자원이 필요할지에 대한 효과적인 해법을 제시할 수 있다. 시뮬레이션 결과를 통해, 제시한 토폴로지에서 최소 비용으로 수렴하는 것을 확인한 후에 좀 더 복잡하고 일반적인 네트워크에서도 수렴함을 보인다.

Keywords

References

  1. J. E. Cohen and F. P. Kelly, "A paradox of congestion in a queuing network," Journal of Applied Probability, Vol. 27 (3), pp. 730-734, 1990. https://doi.org/10.2307/3214558
  2. Y. A. Korilis, A. A. Lazar, and A. Orda, "Capacity allocation under noncooperative routing," IEEE Transactions on Automatic Control, Vol. 42 (3), pp. 309-325, 1997. https://doi.org/10.1109/9.557575
  3. R. Boorstyn and H. Frank, "Large scale network topological optimization," IEEE Transactions on Communications, Vol. 25 (1), pp.29-47, 1977. https://doi.org/10.1109/TCOM.1977.1093708
  4. W. Chou, F. Ferrante, and M. Balagangaadhar, "Integrated optimization of distributed processing netweorks," in Proc. the National Computer Conference, pp. 795-811, 1978.
  5. B. Gavish, "A general model for the topological design of computer networks," in Proc. IEEE GLOBCOM 1986, pp. 1584-1588, 1986.
  6. B. Gavish, "Topological design of computer communication networks - The overall design problem," European Journal of Operational Research, Vol. 58 (2), pp. 149-172, 1992. https://doi.org/10.1016/0377-2217(92)90204-M
  7. K. Maruyama, L. Fratta and D. T. Tang, "Heuristic design algorithm for computer communication networks with different classes of packets," IBM Journal of Research and Development, Vol. 21 (4), pp. 360-369, 1977. https://doi.org/10.1147/rd.214.0360
  8. A. Amiri and H. Pirkul, "Routing and capacity assignment in backbone communication networks," Computers & Operations Research, Vol. 24 (3), pp. 275-287, 1997. https://doi.org/10.1016/S0305-0548(96)00049-4
  9. B. Gavish and I. Neuman, "A system for routing and capacity assignment in computer communication networks," IEEE Transactions on Communications, Vol. 37 (4), pp. 360-366, 1989. https://doi.org/10.1109/26.20116
  10. H.-H. Yen and F. Y.-S. Lin, "Near-optimal delay constrained routing in virtual circuit networks," in Proc. IEEE INFOCOM 2001, pp.750-756, 2001.
  11. M. Prytz, "On optimization in design of telecommunications networks with multicast and unicast traffic," Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, Mar. 2002.
  12. K. Maruyama and D. T. Tang, "Discrete link capacity and priority assignment in communication networks," IBM Journal of Research and Development, Vol. 21 (3), pp. 254-263, 1977. https://doi.org/10.1147/rd.213.0254
  13. M. Gerla and L. Kleinrock, "On the topological design of distributed computer networks," IEEE Transactions on Communications, Vol. 25 (1), pp. 48-60, 1977. https://doi.org/10.1109/TCOM.1977.1093709
  14. A. Riedl, "A hybrid genetic algorithm for routing optimization in IP utilizing bandwidth and delay metrics," in Proc. IEEE Workshop on IP Operations and Management 2002, pp. 160-170, 2002.
  15. S. Chen and K. Nahrstedt, "Distributed Quality-of-Service routing in ad hoc networks", IEEE Journal on Selected Areas in Communications, Vol. 17 (8), pp. 1488-1505, 1999. https://doi.org/10.1109/49.780354
  16. S. L. Gong, S. Y. Kim, J. W. Lee, S. L. Lee and M. K. Ahn, "Link weight optimization for routing considering link utilization in communication networks" in Proc. IEEE ISCIT 2009, pp. 1532-1533, 2009.
  17. F. P. Kelly, A. Maulloo and D. Tan "Rate control for communication networks: Shadow prices, proportional fairness and stability," Journal of the Operational Research Society, Vol. 49 (3), pp. 237-252, 1998.