스마트 그리드를 위한 전력선 통신 시스템에서의 데이터 전송률 향상 기법

Data Transmission Rate Improvement Scheme in Power Line Communication System for Smart Grid

  • 김요철 (광운대학교 전파공학과 유비쿼터스 통신 연구실) ;
  • 배정남 (광운대학교 전파공학과 유비쿼터스 통신 연구실) ;
  • 김윤현 (광운대학교 전파공학과 유비쿼터스 통신 연구실) ;
  • 김진영 (광운대학교 전파공학과 유비쿼터스 통신 연구실)
  • 투고 : 2010.06.02
  • 심사 : 2010.11.30
  • 발행 : 2010.12.31

초록

본 논문은 스마트 그리드를 위한 전력선 통신 시스템에서 데이터 전송률을 향상시키는 적응형 OFDM CP 길이 알고리즘에 대해 연구하였다. 본 논문에서 제안한 기법은 수신단의 CP controller에서 수신된 데이터 프레임과 지연된 동일 데이터 프레임을 상관 처리를 취함으로써 채널 지연 정보를 계산한 후, 즉시 그 정보를 송신단에 피드백 한다. 그 다음, 송신단에서는 다음 데이터 프레임에 대한 CP 길이를 조절하게 된다. Impulsive noise 모델로서, Middleton Class A 간섭 모델을 사용하였고, 성능은 패킷 전송률과 누적 패킷 전송률, 비트 오류율 측면에서 평가되었다. 모의실험 결과로부터 패킷 수가 증가할수록 데이터 이득(감소된 비트 양)이 커지지만, branch 수($N_{br}$)가 증가할수록 데이터 이득 폭은 감소한다는 것을 알 수 있었다. $N_{br}$ 이 3, 5, 10인 경우, 적응형 CP 길이 알고리즘과 고정된 CP 길이 기법의 BER 성능은 비슷하였다. 따라서 제안한 기법은 기존의 고정 CP 길이 기법과 비교하여 BER 성능 감소 없이 데이터 전송률 증가를 달성하였음을 확인할 수 있었다.

In this paper, I propose an adaptive OFDM CP length algorithm for in PLC systems for smart grid. The proposed scheme calculates the channel delay information at the CP controller of the receiver by taking correlation between a received data frame and the following delayed one. The CP controller, immediately, feeds back the channel delay information to the transmitter. Then, the transmitter adapts CP length for next data frame. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of packet data rate, cumulative packet data rate, and bit error rate (BER). The simulation results showed data gain (which is the amount of the reduced bits) gets larger as the number of packets increase, but the amount of data gain reduced as the number of branches ($N_{br}$) increase. In respects of BER for the cases $N_{br}$ is 3, 4, and 5, performance of the adaptive CP length algorithm and the fixed CP scheme are similar. Therefore, it is confirmed the proposed scheme achieved data rate increment without BER performance reduction compared to the conventional fixed CP length scheme.

키워드

참고문헌

  1. Y. M. Doh et al, "A trend analysis of smart grid technology: the convergence of electric power network and IT technologies," ET Trends, Vol.24, No.5, pp.74-86, Oct. 2009.
  2. J. Y. Kim, Power Line Communication Systems, GS Intervision Publisher, Seoul, Korea, 2009.
  3. M. S. Yousuf and M. El-Shafei, "Power line communications: an overview - part I," in proc of 4th Conf. Innovations in Inf. Technol. '07, pp.218-222, Nov. 1996.
  4. H. Hrasnica, A. Haidine, and R. Lehnert, Broadband Powerline Communications Networks, England: Wiley, 2004.
  5. M. Zimmermann and K. Dostert, "An analysis of the broadband noise scenario in power line networks," in Proc. of IEEE Int. Symp. on Power Line Commun. and Its Applications (ISPLC '00), pp.131-138, Apr. 2000.
  6. M. Zimmermann and K. Dostert, "Analysis and modeling of impulsive noise in broad band powerline communications," IEEE Trans. on Electromagnetic Compatibility, Vol.44, No.1, pp.249-258, Feb. 2002. https://doi.org/10.1109/15.990732
  7. L. Hanzo and et al, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting, Wiley, 2003.
  8. R. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000.
  9. J. Anatory and et al, "Effects of multipath on OFDM systems for indoor broadband power-line communication networks," IEEE Trans. Power Delivery, Vol.24, No.3, pp. 1190-1197, July 2009. https://doi.org/10.1109/TPWRD.2009.2014281
  10. M. Babic, J. Baush, T. Kistner, and K. Dostert, "Performance analysis of coded OFDM systems at statistically representative PLC channels," in Proc. of IEEE Int. Symposium on Power Line Commun. and Its Applications (ISPLC '06), pp.104-109, 2006.
  11. W. Henkel and et al, "The cyclic prefix of OFDM/DMT - a analysis," in proc. of Int' Zurich Seminar on Broadband Commun. '02, pp.22-1-3, Feb. 2002.
  12. J. Anatory, N. Theethayi, M.M. Kissaka, N.H. Mvungi, and R. Thottappillil, "The effects of load impedance, line length, and branches in the BPLC-transmission-lines analysis for medium- voltage channel," IEEE Trans. Power Delivery, Vol.22, pp.2156-2162, Oct. 2007. https://doi.org/10.1109/TPWRD.2007.905789
  13. M. Zimmermann and K. Dostert, "A multipath model for the powerline channel," IEEE Trans. on Commun., Vol.50, No.4, pp.553-559, Apr. 2002. https://doi.org/10.1109/26.996069
  14. M. Zimmermann and K. Dostert, "An analysis of the broadband noise scenario in power line networks," in Proc. of IEEE Int' Symposium on Power Line Commun. and Its Applications (ISPLC '00), pp.131-138, Apr. 2000.
  15. D. Middleton, "Statistical-physical model of electromagnetic interference," IEEE Trans. Electromagnetic Compatibility, Vol.EMC-19, No.3, pp.106-126, Aug. 1977. https://doi.org/10.1109/TEMC.1977.303527
  16. T. Fukami, D. Umehara, M. Kawai, and Y. Morihiro, "Noncoherent FSK optimum receiver over impulsive noise channels," in Proc. of IEEE Int. Symposium on Power Line Commun. and Its Applications (ISPLC '03), pp.91-96, Mar. 2003.
  17. HomePlug AV Specification Version 1.1, was released in May. 2007