DOI QR코드

DOI QR Code

Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory

  • Lou, Ping (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Jin-Yong (Department of Chemistry, Sungkyunkwan University)
  • Received : 2010.05.28
  • Accepted : 2010.07.22
  • Published : 2010.09.20

Abstract

On the basis of a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, the analytic expression for the effect of ionic size on the diffuse layer potential drop at negative charge densities has been given for the simple 1:1 electrolyte. It is shown that the potential drop across the diffuse layer depends on the size of the ions in the electrolyte. For a given electrolyte concentration and electrode charge density, the diffuse layer potential drop in a small ion system is smaller than that in a large ion system. It is also displayed that the diffuse layer potential drop is always less than the value of the Gouy-Chapman (GC) theory, and the deviation increases as the electrode charge density increases for a given electrolyte concentration. These theoretical results are consistent with the results of the Monte-Carlo simulation [Fawcett and Smagala, Electrochimica Acta 53, 5136 (2008)], which indicates the importance of including steric effects in modeling diffuse layer properties.

Keywords

References

  1. Fawcett, W. R. Liquids, Solutions, and Interfaces; Oxford UniversityPress: Oxford, New York, 2004.
  2. Gouy, G. Compt. Rend. 1910, 149, 654.
  3. Chapman, D. L. Philos Mag. 1913, 25, 475. https://doi.org/10.1080/14786440408634187
  4. Fawcett, W. R.; Smagala, T. G. Electrochimica Acta 2008, 53,5136. https://doi.org/10.1016/j.electacta.2008.01.101
  5. Bikerman, J. J. Phil. Mag. 1942, 33, 384. https://doi.org/10.1080/14786444208520813
  6. Dutta, M.; Bagchi, S. N. Indian J. Phys. 1950, 24, 61.
  7. Freise, V. Z. Elektrochem. 1952, 56, 822.
  8. Wicke, E.; Eigen, M. Z. Elektrochem. 1952, 56, 551.
  9. Levine, S.; Bell, G. M. J. Phys. Chem. 1960, 64, 1188. https://doi.org/10.1021/j100838a019
  10. Iglic, A.; Kralj-Iglic, V. Electrotecnical. Rev. (Slovenia) 1994, 61,127.
  11. Borukhov, I.; Andelman, D.; Orland, H. Phys. Rev. Lett. 1997, 79,435. https://doi.org/10.1103/PhysRevLett.79.435
  12. Borukhov, I.; Andelman, D.; Orland, H. Electrochim. Acta 2000,46, 221. https://doi.org/10.1016/S0013-4686(00)00576-4
  13. Manciu, M.; Ruckenstein, E. Langmuir 2002, 18, 5178. https://doi.org/10.1021/la020194r
  14. Barbero, G.; Evangelista, L. R.; Olivero, D. J. Appl. Phys. 2000,87, 2646. https://doi.org/10.1063/1.372231
  15. Lue, L. Langmuir 1999, 15, 3726. https://doi.org/10.1021/la9813376
  16. Outhwaite, C. W.; Lamperski, S. Condens. Matter Phys. 2001, 4,739. https://doi.org/10.5488/CMP.4.4.739
  17. Kilic, M. S.; Bazant, M. Z.; Ajdari. A. Phys. Rev. E 2007, 75,021502. https://doi.org/10.1103/PhysRevE.75.021502
  18. Kilic, M. S.; Bazant, M. Z.; Ajdari. A. Phys. Rev. E 2007, 75,021503. https://doi.org/10.1103/PhysRevE.75.021503
  19. Kornyshev, A. A. J. Phys. Chem. B 2007, 111, 5545. https://doi.org/10.1021/jp067857o
  20. Lou, P.; Lee, J. Y. J. Chem. Theory Comput. in press, DOI: 10.1021/ct800375t.
  21. Bhuiyan, L. B.; Outhwaite, C. W.; Henderson, D. J. Electroanal.Chem. 2007, 607, 54. https://doi.org/10.1016/j.jelechem.2006.10.010
  22. Holovko, M.; Badiali, J. P.; di Caprio, D. J. Chem. Phys. 2008, 128,117102. https://doi.org/10.1063/1.2873466
  23. Burak, Y.; Andelman, D. J. Chem. Phys. 2001, 114, 3271. https://doi.org/10.1063/1.1331569

Cited by

  1. Strong non-classical induction forces in ion-surface interactions: General origin of Hofmeister effects vol.4, pp.1, 2015, https://doi.org/10.1038/srep05047
  2. Generalized Poisson—Boltzmann Equation Taking into Account Ionic Interaction and Steric Effects vol.58, pp.3, 2012, https://doi.org/10.1088/0253-6102/58/3/20
  3. The impact of the modified Poisson–Boltzmann model on protein bound to a lipid coated silicon nanowire field effect transistor biosensor in an electrolyte environment pp.1029-0451, 2018, https://doi.org/10.1080/00319104.2018.1464162
  4. How Ionic Polarization Affects Stern Potential: An Insight into Hofmeister Effects vol.80, pp.5, 2016, https://doi.org/10.2136/sssaj2016.04.0095