References
- Netz, A.; Huggins, R. A.; Weppner, W. J. Power Sources 2003,119-121, 95.
- Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838. https://doi.org/10.1149/1.1739217
- Obrovac, M. N.; Christensen, L. Electrochem. Solid-State Lett.2004, 7, A93. https://doi.org/10.1149/1.1652421
- Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.;Dahn, J. R. Electrochem. Solid-State Lett. 2001, 4, A137. https://doi.org/10.1149/1.1388178
- Lee, S. J.; Lee, J. K.; Chung, S. H.; Lee, H. Y.; Lee, S. M.; Baik, H.K. J. Power Sources 2001, 97-98, 191. https://doi.org/10.1016/S0378-7753(01)00761-3
- Kasavajjula, U.; Wang, C.; Appleby, A. J. J. Power Sources 2007,163, 1003. https://doi.org/10.1016/j.jpowsour.2006.09.084
- Obrovac, M. N.; Krause, L. J. J. Electrochem. Soc. 2007, 154,A103. https://doi.org/10.1149/1.2402112
- Dimov, N.; Kugino, S.; Yoshio, M. Electrochim. Acta 2003, 48,1579. https://doi.org/10.1016/S0013-4686(03)00030-6
- Ng, S.-H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.-P.; Liu,H.-K. Angew. Chem. Int. Ed. 2006, 45, 6896. https://doi.org/10.1002/anie.200601676
- Niu, J.; Lee, J. Y. Electrochem. Solid-State Lett. 2002, 5, A107. https://doi.org/10.1149/1.1472256
- Yang, J.; Wang, B. F.; Wang, K.; Liu, X. Y.; Wen, Z. S. Electrochem. Solid-State Lett. 2003, 6, A154. https://doi.org/10.1149/1.1585251
- Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Peres, J.-P.; Talaga, D.; Couzi, M.; Tarascon, J.-M. Adv. Funct. Mater.2007, 17, 1765. https://doi.org/10.1002/adfm.200600937
- Esmanski, A.; Ozin, G. A. Adv. Funct. Mater. 2009, 19, 1999. https://doi.org/10.1002/adfm.200900306
- Kim, H.; Han, B.; Choo, J.; Cho, J. Angew. Chem. Int. Ed. 2008,120, 10305. https://doi.org/10.1002/ange.200804355
- Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.;Wöhrle, T.; Wurm, C.; Winter, M. Electrochem. Solid-State Lett.2008, 11, A76. https://doi.org/10.1149/1.2888173
- Song, S.-W.; Baek, S.-W. Electrochem. Solid-State Lett. 2009, 12,A23. https://doi.org/10.1149/1.3028216
- Zhuang, G. V.; Ross, P. N., Jr. Electrochem. Solid-State Lett. 2003,6, A136. https://doi.org/10.1149/1.1575594
- Ryu, Y.-G.; Lee, S.; Mah, S.; Lee, D. J.; Kwon, K.; Hwang, S.; Doo,S. J. Electrochem. Soc. 2008, 155, A583. https://doi.org/10.1149/1.2940310
- Choi, N. S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S.-S.J. Power Sources 2006, 161, 1254. https://doi.org/10.1016/j.jpowsour.2006.05.049
- Ulman, A. Chem. Rev. 1996, 96, 1533. https://doi.org/10.1021/cr9502357
- Striebel, K. A.; Deng, C. Z.; Wen, S. J.; Cairns, E. J. J. Electrochem. Soc. 1996, 143, 1821. https://doi.org/10.1149/1.1836910
- Song, S.-W.; Reade, R. P.; Cairns, E. J.; Vaughey, J. T.; Thackeray,M. M.; Striebel, K. A. J. Electrochem. Soc. 2004, 151, A1012. https://doi.org/10.1149/1.1758719
- Baek, S.-W.; Hong, S.-J.; Kim, D.-W.; Song, S.-W. J. Power Sources 2009, 189, 660. https://doi.org/10.1016/j.jpowsour.2008.09.035
- Song, S.-W.; Baek, S.-W. Electrochim. Acta 2009, 54, 1312. https://doi.org/10.1016/j.electacta.2008.09.021
- Zhuang, G. V.; Xu, K.; Yang, H.; Jow, T. R.; Ross, P. N., Jr. J. Phys. Chem. B 2005, 109, 17567. https://doi.org/10.1021/jp052474w
- Compton, S. V.; Compton, D. A. C. In Practical Sampling Techniques for Infrared Analysis; Coleman, P. B., Ed.; CRC Press: Boca Raton, FL, 1993.
- Han, D.; Lorentzen, J. D.; Weinberg-Wolf, J.; McNeil, L. E. J. Appl. Phys. 2003, 94, 2930. https://doi.org/10.1063/1.1598298
- Brodsky, M. H.; Cardona, M.; Cuomo, J. Phys. Rev. B 1977, 16,3556. https://doi.org/10.1103/PhysRevB.16.3556
- Baranchugov, V.; Markevich, E.; Pollak, E.; Salitra, G.; Aurbach,D. Electrochem. Commun. 2007, 9, 796. https://doi.org/10.1016/j.elecom.2006.11.014
- Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. https://doi.org/10.1063/1.1674108
- Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy; Academic Press: New York, 1990.
- Socrates, G. Infrared Characteristic Group Frequencies, Tables and Charts; John Wiley & Sons: New York, 1994.
- Spectral database for organic compounds SDBS, http://riodb01.ibase.aist.go.jp/sdbs
- Zhang, X.; Kostecki, R.; Richardson, T. J.; Pugh, J. K.; Ross, P. N.,Jr. J. Electrochem. Soc. 2001, 148, A1341. https://doi.org/10.1149/1.1415547
- Xu, K. Chem. Rev. 2004, 104, 4303. https://doi.org/10.1021/cr030203g
- Aurbach, D.; Markovsky, B.; Shechter, A.; Ein-Eli, Y. J. Electrochem. Soc. 1996, 143, 3809. https://doi.org/10.1149/1.1837300
- Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M. Acta Materialia 2003¸ 51, 1103. https://doi.org/10.1016/S1359-6454(02)00514-1
- Schroeder, G.; Gierczyk, B.; Waszak, D.; Walkowiak, M. Electrochem. Commun. 2006, 8, 1583. https://doi.org/10.1016/j.elecom.2006.07.030
- Santner, H. J.; Korepp, C.; Winter, M.; Besenhard, J. O.; Moller,K.-C. Anal. Bioanal. Chem. 2004, 379, 266. https://doi.org/10.1007/s00216-004-2522-4
- Aurbach, D.; Moshkovich, M.; Cohen, Y.; Schechter, A. Langmuir1999, 15, 2947. https://doi.org/10.1021/la981275j
- Matsuta, S.; Asada, T.; Kitaura, K. J. Electrochem. Soc. 2000, 147,1695. https://doi.org/10.1149/1.1393420
- Zhuang, G. V.; Yang, H.; Blizanac, B.; Ross, P. N., Jr. Electrochem. Solid-State Lett. 2005, 8, A441. https://doi.org/10.1149/1.1979327
- Yang, H.; Zhuang, G. V.; Ross, P. N., Jr. J. Power Sources 2006,161, 573. https://doi.org/10.1016/j.jpowsour.2006.03.058
Cited by
- Understanding the Interfacial Processes at Silicon–Copper Electrodes in Ionic Liquid Battery Electrolyte vol.116, pp.28, 2012, https://doi.org/10.1021/jp3019815
- Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries vol.2, pp.5, 2012, https://doi.org/10.1039/c2ra01183b
- Self-organized Artificial SEI for Improving the Cycling Ability of Silicon-based Battery Anode Materials vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1296
- Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries vol.4, pp.3, 2013, https://doi.org/10.5229/JECST.2013.4.3.108
- High-Columbic-Efficiency Lithium Battery Based on Silicon Particle Materials vol.10, pp.1, 2015, https://doi.org/10.1186/s11671-015-1103-0
- Roles of Oxygen and Interfacial Stabilization in Enhancing the Cycling Ability of Silicon Oxide Anodes for Rechargeable Lithium Batteries vol.160, pp.6, 2013, https://doi.org/10.1149/2.118306jes
- Electrodes and Its Origins vol.161, pp.4, 2014, https://doi.org/10.1149/2.013404jes
- 계면안정화를 통한 Si-SiO2-흑연 복합재 음극의 전기화학적 특성 개선 vol.15, pp.3, 2010, https://doi.org/10.5229/jkes.2012.15.3.154
- Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes vol.31, pp.6, 2019, https://doi.org/10.1002/adma.201804204