References
- Arnold, B. and Beaver, R. (2000). Hidden truncation models, Sankhya, 62, 23–35.
- Brown, G. H. (1979). An optimization criterion for linear inverse estimation, Technometrics, 21, 727–736.
- Chow, S. and Shao, J. (1990). On the difference between the classical and inverse methods of calibration,Applied Statistics, 39, 219–228. https://doi.org/10.2307/2347761
- Halperin, M. (1970). On inverse estimation in linear regression, Technometrics, 12, 595–601.
- Kim, S. (2009). Inverse Circular Regression with Possibly Asymmetric Error Distribution, PhD Dissertation, University of California, Riverside.
- Krutchkoff, R. G. (1967). Classical and inverse regression methods of calibration, Technometrics, 9, 425–439. https://doi.org/10.2307/1266511
- Krutchkoff, R. G. (1969). Classical and inverse regression methods of calibration in extrapolation (in notes),Technometrics, 11, 605–608.
- Martinelle, S. (1970). On the choice of regression in linear calibration, Technometrics, 12, 157–161. https://doi.org/10.2307/1267361
- Minder, C. E. and Whitney, J. B. (1975). A likelihood analysis of the linear calibration problem, Technometrics, 17, 463–471. https://doi.org/10.2307/1268433
- Pitman, E. (1937). The closest estimates of statistical parameters, Proceedings of the Cambridge Philosophical Society, 33, 212–222. https://doi.org/10.1017/S0305004100019563
Cited by
- Inverse circular–circular regression vol.119, 2013, https://doi.org/10.1016/j.jmva.2013.04.011
- Skew Normal Boxplot and Outliers vol.19, pp.4, 2012, https://doi.org/10.5351/CKSS.2012.19.4.591