References
- Adewale, A. J., Dinu, I., Potter, J. D., Liu, Q. and Yasui, Y. (2008). Pathway analysis of microarray data via regression, Journal of Computational Biology, 15, 269-277. https://doi.org/10.1089/cmb.2008.0002
- Bair, E. and Tibshirani, R. (2004). Semi-supervised methods to predict patient survival from gene Down-loaded from gene expression data, PLOS Biology, 2, 511-522.
- Brier, G. W. (1950). Verification of forecasts expressed in terms of probability, Monthly Weather Review,78, 1-3. https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
- Chen, X. and Wang, L. (2009). Integrating Biological Knowledge with Gene Expression Profiles for Survival Prediction of Cancer, Journal of Computational Biology, 16, 265-278. https://doi.org/10.1089/cmb.2008.12TT
- Chen, X., Wang, L., Smith, J. D. and Zhang, B. (2008). Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes, Bioinformatics, 24, 2479-2481.
- Dinu, I., Potter, J. D., Mueller, T., Liu, Q., Adewale, A. J., Jhangri, G. S., Einecke, G., Famulski, K. S., Halloran, P. and Yasui, Y. (2007). Improving gene set analysis of microarray data by SAM-GS, BMC Bioinformatics, 8, 242. https://doi.org/10.1186/1471-2105-8-242
- Goeman, J. J., Oosting, J., Cleton-Jansen, A. M., Anninga, J. K. and van Houwelingen, H. C. (2005). Testing association of a pathway with survival using gene expression data, Bioinformatics, 21, 1950-1957. https://doi.org/10.1093/bioinformatics/bti267
- Goeman, J. J., van de Geer, S. A., de Kort, F. and van Houwelingen, H. C. (2004). A global test for groups of genes: Testing association with a clinical outcome, Bioinformatics, 20, 93-99. https://doi.org/10.1093/bioinformatics/btg382
- Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data, Statistics in Medicine, 18, 2529-2545. https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
- Hastie, T., Tibshirani, R. and Friedman, J. H. (2001). The Elements of Statistical Learning, Data Mining, Inference, and Prediction, Springer-Verlag, New York.
- Heagerty, P. J., Lumley, T. and Pepe, M. S. (2000). Time-dependent ROC curves for censored survival data and a diagnostic marker, Biometrics, 56, 337-344. https://doi.org/10.1111/j.0006-341X.2000.00337.x
- Kerr M. and Churchill, G. (2001). Experimental design for gene expression microarrays, Biostatistics, 2,183-201. https://doi.org/10.1093/biostatistics/2.2.183
- Kim, S. Y. and Volsky, D. J. (2005). PAGE: Parametric analysis of gene set enrichment, BMC Bioinformatics,6, 14. https://doi.org/10.1186/1471-2105-6-14
- Ma, X. J., Wang, Z., Ryan, P. D., Isakoff, S. J., Barmettler, A., Fuller, A., Muir, B., Mohapatra, G., Salunga, R., Tuggle, J. T., Tran, Y., Tran, D., Tassin, A., Amon, P., Wang, W., Wang, W., Enright, E., Stecker, K., Estepa-Sabal, E., Smith, B., Younger, J., Balis, U., Michaelson, J., Bhan, A., Habin, K., Baer, T. M., Brugge, J., Haber, D. A., Erlander, M. G. and Sgroi, D. C. (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen, Cancer Cell, 5, 607-616. https://doi.org/10.1016/j.ccr.2004.05.015
- Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson,E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R.,Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. and Groop, L. C. (2003).PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, 34, 267-273. https://doi.org/10.1038/ng1180
- Rosenwald, A., Wright, G., Chan, W. C., Connors, J. M., Campo, E., Fisher, R. I., Gascoyne, R. D., Muller-Hermelink, H. K., Smeland, E. B., Giltnane, J. M., Hurt, E. M., Zhao, H., Averett, L., Yang, L., Wilson,W. H., Jaffe, E. S., Simon, R., Klausner, R. D., Powell, J., Duffey, P. L., Longo, D. L., Greiner, T. C., Weisenburger, D. D., Sanger, W. G., Dave, B. J., Lynch, J. C., Vose, J., Armitage, J. O., Montserrat, E., Lopez-Guillermo, A., Grogan, T. M., Miller, T. P., LeBlanc, M., Ott, G., Kvaloy, S., Delabie, J., Holte, H., Krajci, P., Stokke, T. and Staudt, L. M. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma, The New England Journal of Medicine, 346, 1937-1947. https://doi.org/10.1056/NEJMoa012914
- Simon, R., Radmacher, M. D., Dobbin, K. and McShane, L. M. (2003). Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification, Journal of National Cancer Institutes, 95, 14-18. https://doi.org/10.1093/jnci/95.1.14
- Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A.,Pomeroy, S. L. Golub, T. R., Lander, E. S. and Mesirov, J. P. (2005). Gene set enrichment analysis:A knowledge-based approach for interpreting genome-wide expression profiles, PNAS, 102, 15545-15550. https://doi.org/10.1073/pnas.0506580102
- Tibshirani, R. (1997). The Lasso method for variable selection in the cox model, Statistics in Medicine, 16,385-395. https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
- Tibshirani, R., Hastie, T. Narasimhan, B. and Chu, G. (2003). Class prediction by nearest shrunken centroids, with applications to DNA microarrays, Statistical Science, 18, 104-117. https://doi.org/10.1214/ss/1056397488
- Tusher, V. G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, PNAS, 98, 5116-5121. https://doi.org/10.1073/pnas.091062498