Mouse의 신장상피세포에서 패장(敗醬)추출물이 산화 스트레스 및 NF-${\kappa}B$ signaling에 미치는 영향

The Effect of Patriniae Radix on the Oxidative Stress and the NF-${\kappa}B$ Signaling in Mouse LLC-$PK_1$ Cell

  • 김현영 (대구한의대학교 한의과대학 내과학교실) ;
  • 장수영 (대구한의대학교 한의과대학 내과학교실) ;
  • 최규호 (대구한의대학교 한의과대학 내과학교실) ;
  • 신현철 (대구한의대학교 한의과대학 내과학교실)
  • Kim, Hyun-Young (Dept. of Internal Medicine, College of Oriental Medicine, Dae-gu Haany University) ;
  • Jang, Soo-Young (Dept. of Internal Medicine, College of Oriental Medicine, Dae-gu Haany University) ;
  • Choi, Gyu-Ho (Dept. of Internal Medicine, College of Oriental Medicine, Dae-gu Haany University) ;
  • Shin, Hyeon-Cheol (Dept. of Internal Medicine, College of Oriental Medicine, Dae-gu Haany University)
  • 발행 : 2010.03.31

초록

Objectives : The aims of this study were to investigate the cytoprotective, antioxidative and inflammation genes inhibitory effects of Patriniae Radix on the mouse LLC-$PK_1$ cells (renal epithelial cells). Methods : The cytoprotective effect of Patriniae Radix was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The antioxidative effect was measured in terms of generation amount of superoxide anion radical (${\cdot}{O_2}^-$) by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), nitric oxide (NO) by 4,5-diaminofluorescein (DAF-2), peroxynitrite ($ONOO^-$) by dihyldrorhodamine 123 (DHR 123) and prostaglandin $E_2$ ($PGE_2$) by $PGE_2$ immunoassay on $H_2O_2$-treated LLC-$PK_1$ cells. For measuring of inflammation genes inhibitory effects, western blot was performed to detect IKK-$\alpha$, phospho-$I{\kappa}B-\alpha$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, IL-$1{\beta}$ and VCAM-1 protein level in cytosol fractions from LLC-$PK_1$ cells. Results : Patriniae Radix extract reduced the $H_2O_2$-induced cell death and inhibited the amount of $H_2O_2$-induced ${\cdot}{O_2}^-$, NO, $ONOO^-$, $PGE_2$ generation dose-dependently on the mouse LLC-$PK_1$ cells in vitro. Also Patriniae Radix extract inhibited the expression of IKK-$\alpha$, phospho-$I{\kappa}B-\alpha$, COX-2, iNOS, IL-$1\beta$ and VCAM-1 genes dose-dependently by means of decreasing activation of NF-${\kappa}B$. Conclusions : According to above results, it was identified that Patriniae Radix had the cytoprotective, antioxidative and inflammation genes inhibitory effects. So it was suggested that Patriniae Radix would be effective to the treatment for the inflammatory process and inflammation-related diseases.

키워드

참고문헌

  1. 임동건. 산화 스트레스: 활성 산소종과 산화질소. 대한중환자의학회지. 2004;19(2):81-5.
  2. 대한노인병학회. 노인병학. 서울: 의학출판사; 2005, p. 33
  3. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:46-50.
  4. Del Arco PG, Martinez-Martinez S, Calvo V, Armesilla AL, Redondo JM. Antioxidants and AP-1 activation: a brief overview. Immunibiology. 1997;198:273-8. https://doi.org/10.1016/S0171-2985(97)80047-2
  5. Liu, S.F. and Malik, A.B. $NF-{\kappa}B $ activation as a pathological mechanism of septic shock and inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2005;290:622-45.
  6. 전국한의과대학 본초학교수 共編著. 본초학. 서울: 영림사; 2000, p. 57-8.
  7. 안덕균. 원색 한국본초도감. 서울: 교학사; 2002,p. 105.
  8. 森立之重輯. 神農本草經. 上海: 群聯出版社; 1955,p. 66.
  9. 박성주, 정종길, 서상완, 황상욱, 김영우, 송달수 등. 敗醬의 급성 췌장염 억제 효과. 대한본초학회지. 2005;20(3):93-100.
  10. 배지현, 손국희, 이은주. 식중독 유발 세균의 증식에 미치는 敗醬과 連翹추출물의 상승효과. 한국미생물생명공학회지. 2005;33(2):130-5.
  11. 임종필, 최훈. Proteinase 활성수용체-2 유발 흰쥐 발바닥 부종에 미치는 敗醬根물추출물의 항염증 효과. 한국약용작물학회지. 2004;12(1): 47-52.
  12. Wei, F., S. Zou, A. Young, R. Dubner, and K. Ren. Effects of four herbal extracts on adjuvant -induced inflammation and hyperalgesia in rats. J. Alternative Med. 1999;5:429-36. https://doi.org/10.1089/acm.1999.5.429
  13. 박희수, 김형석. 肝兪敗醬약침 처리가 백서의 간기능 회복에 미치는 영향. 대한침구학회지. 1999;16(1):223-40.
  14. Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K. An improved colorimetric assay for interleukin 2. J Immunol Methods. 1986; 93(2):157-65. https://doi.org/10.1016/0022-1759(86)90183-3
  15. Cathcart R, Schwiers E, Ames BN. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein fluorescent assay. Anal Biochem. 1983;134:111-6. https://doi.org/10.1016/0003-2697(83)90270-1
  16. Nagata N, Momose K, Ishida Y. Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J Biochem Tokyo. 1999;125:658-61. https://doi.org/10.1093/oxfordjournals.jbchem.a022333
  17. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Res Commun. 1994;16:149-56.
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
  19. 李時珍. 本草綱目. 北京: 人民衛生出版社; 1982, p. 1052.
  20. 중약대사전 편찬위원회. 중약대사전. 서울: 정담; 1997, p. 4528-30.
  21. 우원식, 최재수. 敗醬草의 triterpenoid 및 coumarin 성분. 생약학회지. 1982;13(1):54.
  22. Kim YH. Studies on components of Patrinia scabiosaefolia. 생약학회지. 1997;28(2):93-8.
  23. 안수정. 敗醬의 HeLa cell 증식억제와 사멸효과. 경희대학교 대학원 석사학위논문. 2005.
  24. 김인규. 전립선암 세포에서 敗醬추출물의 세포고사 유도 효과. 원광대학교 대학원 석사학위논문. 2003.
  25. Floyd RA. Neuroinflammatory processes are important in neurodegenerative disease: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Rad Biol Med. 1999;26:1346-55. https://doi.org/10.1016/S0891-5849(98)00293-7
  26. Kojda G, Harrison D. Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res. 1999;43:562-71. https://doi.org/10.1016/S0008-6363(99)00169-8
  27. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993;91:2546-51. https://doi.org/10.1172/JCI116491
  28. Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA. 1985;82:7738-42. https://doi.org/10.1073/pnas.82.22.7738
  29. Belvisi M, Barnes PJ, Larkin S, Yacoub M, Tadjkarimi S, Williams TJ, et al. Nitric oxide synthase activity is elevated in inflammatory lung disease in humans. Eur J Pharmacol. 1995;283:255-8. https://doi.org/10.1016/0014-2999(95)00421-G
  30. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990;87:1620-4. https://doi.org/10.1073/pnas.87.4.1620
  31. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrance lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991;266:4244-50.
  32. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705-16. https://doi.org/10.1016/0092-8674(86)90346-6
  33. Kopp EB, Ghosh S. $NF-{\kappa}B $ and rel proteins in innate immunity. Adv Immunol. 1995;58:1-27. https://doi.org/10.1016/S0065-2776(08)60618-5
  34. Baeuerle PA, Baltimore D. $NF-{\kappa}B $ : ten years after. Cell. 1996;87:13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  35. Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of $NF-{\kappa}B $. Annu Rev Cell Biol. 1994;10:405-55. https://doi.org/10.1146/annurev.cb.10.110194.002201
  36. 윤호일, 이창훈, 이희석, 이춘택, 김영환, 한성구 등. FK506과 cyclosporin A가 기관지상피세포, 단핵구, 림프구 및 폐포대식세포에서 $I{\kappa}B{\alpha}$ 분해 및 $IKK{\alpha}$ 활성에 미치는 효과. 대한 결핵 및 호흡기학회. 2003;54(4):449-58.
  37. Baeuerle PA, Baltimore D. $I{\kappa}B$ : A specific inhibitor of the $NF-{\kappa}B$ transcription factor. Science. 1988;242:540-6. https://doi.org/10.1126/science.3140380
  38. Baeuerle PA, Baltimore D. A 65-kD subunit of active $NF-{\kappa}B$ is required for inhibition of $NF-{\kappa}B$ by $I{\kappa}B$. Genes Dev. 1989;3:1689-98. https://doi.org/10.1101/gad.3.11.1689
  39. Posadas, I., Terencio, M. C., Guillen, I., et al.. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch. Pharmacol. 2000;361:98-106. https://doi.org/10.1007/s002109900150
  40. Needleman, P. and Isakson, P. C. The discovery and function of COX-2. J. Rheumatol. Suppl.1997;49:6-8.
  41. Seybold, V. S., Jia, Y. P. and Abrahams, L. G. Cyclooxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain. 2003;105:47-55. https://doi.org/10.1016/S0304-3959(03)00254-9
  42. Moncada, S., Palmer, R. M., Higgs, E. A. Nitricoxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991;43:109-42.
  43. Yun, H. Y., Dawson, V. L. and Dawson, T. M. Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 1996;10:291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20
  44. 박희제, 배기상, 김도윤, 서상완, 박경배, 김병진 등. LPS로 자극한 RAW264.7 세포에서 羌活추출물의 염증성 세포활성 물질의 억제효과. 대한본초학회지. 2008;23(3):127-34.
  45. Mes Bouhlel MA, Staels B, Chinetti-Gbaguidi G. Peroxisome proliferator-activated receptors-from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J Intern Med. 2008;263(1): 28-42
  46. Li JJ, Zhu CG, Yu B, Liu YX, Yu MY. The role of inflammation in coronary artery calcification. Ageing Res Rev. 2007;6(4):263-70. https://doi.org/10.1016/j.arr.2007.09.001