Interactions of Tricyclic Isoxazole Analogues with ${\alpha}_{2c}$-Adrenoceptor by Homology Modeling

상동성 모델링을 이용한 Tricyclic Isoxazole 유도체와 ${\alpha}_{2c}$-Adrenoceptor의 상호작용

  • Choi, Kyoung-Seob (Neotek Coperation) ;
  • Kang, Na-Na (College of Pharmacy, Chungnam National University) ;
  • Myung, Pyung-Keun (College of Pharmacy, Chungnam National University) ;
  • Sung, Nack-Do (Department of Applied Biological Chemistry, College of Agriculture & Life Science, Chungnam National University)
  • 최경섭 (네오텍(주)) ;
  • 강나나 (충남대학교 약학대학) ;
  • 명평근 (충남대학교 약학대학) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학과)
  • Received : 2010.05.11
  • Accepted : 2010.07.16
  • Published : 2010.08.31

Abstract

Adrenoceptor has been considered to be an important target in psychiatric disorders. Based on x-ray structures of bovine rhodopsin, we established homology model of ${\alpha}_{2c}$-adrenoceptor (ADA2C_rat) and then analyzed docking from binding model of receptor-ligand complex with high-active compound No.29 in tricyclic isoxazole analogues (1-30). We observed that the N (1.907 $\AA$) and O (1.712 $\AA$) atoms of isoxazole ring on the docked ligand (No.29) formed H-bonding interaction with O-H of Ser5.32 and carmeron phenyl ring centroid of tricyclic isoxazole formed $\pi-\pi$ interaction at 3.342 $\AA$ distance with phenyl ring centroid of Phe6.52. According to predictions of blood-brain distribution (logBB) through penetration of blood-brain barrie (BBB) and polar surface area (PSA) of the ligands, the high-active compound No.29 has values of logBB=-0.203, PSA=67.50, respectively. These results suggest that the high-active compound No.29 is a novel anti-depressant with the characteristics such as dopamine and serotonin.

Keywords

References

  1. DeGraff, J. L., Gurevich, V. V. and Benovic, J. L. : The third intracellular loop of alpha-2-adrenergic receptors determines subtype specificity of arrestin interaction. J. Biol. Chem. 277, 43247 (2002). https://doi.org/10.1074/jbc.M207495200
  2. Hieble, J. P. and Ruffolo, R. R. Jr. : Adrenoceptors: Structure, Function and Pharmacology Ruffolo R. R. Jr. (eds.) Harwood Academic Publisher, United Kingdom, p. 109 (1995).
  3. Bylund, D. B., Eikenberg, D. C., Hieble, J. P., Langer, S. Z., Lefkowitz, R. J., Minneman, K. P., Molinoff, P. B., Ruffolo, R. R. Jr. and Trendelenburg, U. : International union of pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 46, 121 (1994).
  4. Gerhardt, M. A. and Neubig, R. R. : Multiple Gi protein subtypes regulate a single effector mechanism. Mol. Pharmacol. 40, 707 (1991).
  5. Eason, M. G., Kurose, H., Holt, B. D., Raymond, J. R. and Liggett, S. B. : Simultaneous coupling a2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J. Biol. Chem. 267, 15795 (1992).
  6. McDonald, E., Kobilka, B. K. and Dcheinin, M. : Gene targeting: homing in on $\alpha_2$-adrenoceptor- subtype function. Trends Pharmacol. Sci. 18, 211 (1997). https://doi.org/10.1016/S0165-6147(97)90625-8
  7. Philipp, M., Brede, M. and Hein, L. : Physiological significance of a2-adrenergic receptor subtype diversity: one receptor is not enough. Am. J. Physiol. Regul. Integr. Comput. Physiol. 283, 287 (2002). https://doi.org/10.1152/ajpregu.00123.2002
  8. Hunter, J. C., Fontana, D. J., Hedley, L. R., Jasper, J. R., Lewis, R., Link, R. E., Secchi, R., Sutton, J. and Eglen, R. M. : Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br. J. Pharmacol. 122, 1339 (1997). https://doi.org/10.1038/sj.bjp.0701520
  9. Janumpalli, S., Butler, L. S., MacMillan, L. B., Limbird, L. E. and McNamara, J. O. : A point mutation (D79N) of the alpha2A adrenergic receptor abolishes the antiepileptogenic action of endogenous norepinephrine. J. Neurosci. 18, 2004 (1998).
  10. Stone, L. S., MacMillan, L. B., Kitto, K. F., Limbird, L. E. and Wilcox, G. L. : The $\alpha$2A adrenergic receptor subtype mediates spinal analgesia evoked by $\alpha$2 agonists and is necessary for spinal adrenergic-opioid synergy. J. Neurosci. 17, 7157 (1997).
  11. Avery, R. A., Franowicz, J. S., Studholme, C., van Dyck, C. H. and Arnsten, A. F. : The $\alpha$2A-adrenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task. Neuropsychopharmacol. 23, 240 (2000). https://doi.org/10.1016/S0893-133X(00)00111-1
  12. Link, R. E., Desai, K., Hein, L., Stevens, M. E., Chruscinski, A., Bernstein, D., Barsh, G. S. and Kobilka, B. K. : Cardiovascular regulation in mice lacking $\alpha$2-adrenergic receptor subtypes b and c. Science 273, 803 (1996). https://doi.org/10.1126/science.273.5276.803
  13. Makaritsis, K. P., Handy, D. E., Johns, C., Kobilka, B. K., Gavras, I. and Gavras, H. : Role of the $\alpha$2B-adrenergic receptor in the development of salt-induced hypertension. Hypertension 33, 14 (1999). https://doi.org/10.1161/01.HYP.33.1.14
  14. Bjorklund, M., Sirvio, J., Sallinen, J., Scheinin, M., Koblilka, B. K. and Riekkinen, P, Jr. : $\alpha$2C-adrenoceptor overexpression disrupts execution of spatial and non-spatial search patterns. Neuroscience 88, 1187 (1999). https://doi.org/10.1016/S0306-4522(98)00306-6
  15. Tanila, H., Mustonen, K., Sallinen, J., Scheinin, M. and Riekkinen, P. Jr. : Role of $\alpha$2C-adrenoceptor subtype in spatial working memory as revealed by mice with targeted disruption of the $\alpha$2C-adrenoceptor gene. Eur. J. Neurosci. 11, 599 (1999). https://doi.org/10.1046/j.1460-9568.1999.00464.x
  16. Sallinen, J., Haapalinna, A., Viitamaa, T., Kobilka, B. K. and Scheinin, M. : D-amphetamine and L-5-hydroxytryptophaninduced behaviors in mice with genetically-altered expression of the $\alpha$2C-adrenergic receptor subtype. Neuroscience 86, 959 (1998). https://doi.org/10.1016/S0306-4522(98)00100-6
  17. Fairbanks, C. A., Stone, L. S., Kitto, K. F., Nguyen, H. O., Posthumus, I. J. and Wilcox, G. L. : $\alpha$2C-adrenergic receptors mediate spinal analgesia and adrenergic-opioid synergy. J. Pharm. Exp. Ther. 300, 282 (2002). https://doi.org/10.1124/jpet.300.1.282
  18. Moura, E., Afonso, J., Hein, L. and Vieira-Coelho M. A. : $\alpha$2-adrenoceptor subtypes involved in the regulation of catecholamine release from the adrenal medulla of mice. Br. J. Pharmacol. 149, 1049 (2006).
  19. Scheinin, M,, Sallinen, J. and Haapalinna, A. : Evaluation of the $\alpha$2C-adrenoceptor as a neuro psychiatric drug target studies in transgenic mouse models. Life Sci. 68, 2277 (2001). https://doi.org/10.1016/S0024-3205(01)01016-5
  20. Chotani, M. A., Mitra, S., Su, B. Y., Flavahan, S., Eid, A. H., Clark, K. R., Montague, C. R., Paris, H., Handy, D. E. and Flavahan, N. A. : Regulation of $\alpha_2$-adrenoceptors in human vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 286, 59 (2004). https://doi.org/10.1152/ajpheart.00268.2003
  21. Bucheler, M. M., Hadamek, K. and Hein, L. : Two $\alpha_2$- adrenergic receptor subtypes, $\alpha_{2A}$ and $\alpha_{2C}$, inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109, 819 (2002). https://doi.org/10.1016/S0306-4522(01)00531-0
  22. Andres, J. I., Alcazar, J., Alonso, J. M., Alvarez, R. M., Bakker, M. H., Biesmans, I., Cid, J. M., De Lucas, A. I., Fernandez, J., Font, L. M., Hens, K. A., Iturrino, L., L Joerts, I., Martínez, S., Megens, A. A., Pastor, J., Vermote, P. C. and Steckler, T. : Discovery of a new series of centrally active tricyclic isoxazoles combining serotonin (5-HT) reuptake inhibition alpha2-adrenoceptor blocking activity. J. Med. Chem. 48, 2054 (2005) https://doi.org/10.1021/jm049619s
  23. Samanta, S., Alam, S. M., Panda, P. and Jha, T. : Pharmacophore mapping of tricyclic isoxazoles for their affinity towards alpha-2 adreoreceptors. Internet Elec. Mole. Des. 5, 503 (2006)
  24. Norman, B. H., Lander, P. A., Gruber, J. M., Kroin, J. S., Cohen, J. D., Jungheim, L. N., Starling, J. J., Law, K. L., Self, T. D., Tabas, L. B., Williams, D. C., Paul, D. C. and Dantzig, A. H. : Cyclohexyl-linked tricyclic isoxazoles are potent and selective modulators of multidrug resistance protein (MRP1). Bioorg. Med. Chem. Lett. 15, 5526 (2005). https://doi.org/10.1016/j.bmcl.2005.08.075
  25. Andres, J. I., Alcazar, J., Alonso, J. M., Alvarez, R. M., Cid, J. M., De Lucas, A. I., Fernandez, J., Martínez, S., Nieto, C., Pastor, J., Bakker, M. H., Biesmans, I., Heylen, L. I. and Megens, A. A. : Synthesis of 3a,4-dihydro-3H[1]benzopyrano[ 4,3-c]isoxazoles, displaying combined 5-HT uptake inhibiting and alpha2-adrenoceptor antagonistic activities: A novel series of potential antidepressants. Bioorg. Med. Chem. Lett. 13, 2719 (2003) https://doi.org/10.1016/S0960-894X(03)00525-0
  26. Pastor, J., Alcazar, J., Alvarez, R. M., Andres, J. I., Cid, J. M., De Lucas, A. I., Diaz, A., Fernandez, J., Font, L. M., Iturrino, L., Lafuente, C., Martinez, S., Bakker, M. H., Biesmans, I., Heylen, L. I. and Megens, A. A. : Synthesis of 3a,4-dihydro-3H-[1]benzopyrano[4,3-c]-isoxazoles, displaying combined 5-HT uptake inhibiting and alpha2- adrenoceptor antagonistic activities. Part 2: Further exploration on the cinnamyl moiety. Bioorg. Med. Chem. Lett. 14, 2917 (2004) https://doi.org/10.1016/j.bmcl.2004.03.031
  27. Andres, J. I., Alcazar, J., Alonso, J. M., De Lucas, A. I., Iturrino, L., Biesmans, I. and Megens, A. A. : Synthesis of 7-amino-3a,4-dihydro-3H-[1]benzopyrano[4,3-c]isoxazole derivatives displaying combined alpha2-adrenoceptor antagonistic and 5-HT reuptake inhibiting activities. Bioorg. Med. Chem. 14, 4361 (2006). https://doi.org/10.1016/j.bmc.2006.02.043
  28. National Center for Biotechnology Information. (Http://www.ncbi.nlm.nih.gov.)
  29. Ryckaert, J. P., Ciccotti, G. and Berendsen, H. J. C. : Numerical integration of the cartesian equations of motion of a system with constrains: Molecular synamics of n-alkanes. J. Comput. Phys. 23, 327 (1977). https://doi.org/10.1016/0021-9991(77)90098-5
  30. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. and Haak, J. R. : Molecular dynamics with coupling to an external bath. J. Comput,. Phys. 81, 3684 (1984).
  31. Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. : PROCHECK: A program to check the stereochemical quality of protein structure. J. Appl. Crystallogr. 26, 283 (1993). https://doi.org/10.1107/S0021889892009944
  32. Sippl, M. J. : Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structure. J. Comput. Aided Mol. Des. 7, 473 (1993). https://doi.org/10.1007/BF02337562
  33. Ballesteros, J. A. and Weinstein, H. : Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366 (1995). https://doi.org/10.1016/S1043-9471(05)80049-7
  34. Jones, G., Willett, P., Glen, R. C., Leach, A. R. and Taylor, R. : Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727 (1997). https://doi.org/10.1006/jmbi.1996.0897
  35. Macro Model, version 9.5, User Manual, Schröodinger, LLC, New York, NY, (2007).
  36. QikProp., version 2.5, User Manual, LLC, New York, NY (2007).
  37. DeGraff, J. L., Gurevich, W. and Benovic, J. L. : The third intracellular loop of alpha2-adrenergic receptors determines subtype specificity of arrestin interaction. J. Bio. Chem. 227, 43247 (2002).
  38. Jean, D. D., Claudia, D. B. and David, B. B. : Down-regulation of the alpha-2C adrenergic receptor: involvement of a serine/threonine motif in the third cytoplasmic loop. BMC Pharmacology 2, 9 (2002). https://doi.org/10.1186/1471-2210-2-9
  39. Lopez-Rodriguez, M. L., Vicente, B., Deupi, X., Barrondo, S., Olivella, M., Morcillo, M. J., Behamu, B., Ballesteros, J. A., Salles, J. and Pardo, L. : Design, synthesis and pharmacological evaluation of 5-hydroxytryptamine(1a) receptor ligands to explore the three-dimensional structure of the receptor. Mol. Pharmacol. 62, 15 (2002). https://doi.org/10.1124/mol.62.1.15
  40. Ballesteros, J. A., Deupi, X., Olivella, M., Haaksma, E. E. and Pardo, L. : Serine and threonine residues bend $\alpha$-helices in the $\chi_1$=g-conformation. Biophys. J. 79, 2754 (2000). https://doi.org/10.1016/S0006-3495(00)76514-3
  41. Porter, J. E., Hwa, J. and Perez, D. M. : Activation of the alpha1B-adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint. J. Biol. Chem. 271, 28318 (1996). https://doi.org/10.1074/jbc.271.45.28318
  42. Shi, L., Liapakis, G., Xu, R., Guarnieri, F., Ballesteros, J. A. and Javitch, J. A. : Beta2-adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J. Biol. Chem. 277, 40989 (2002). https://doi.org/10.1074/jbc.M206801200
  43. Pardridge, W. M. : CNS drug design based on principles of blood-brain barrier transport. J. Neurochem. 70, 1781 (1998).
  44. Kalvass, J. C. and Maurer, T. S. : Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm. Drug Dispos. 23, 327 (2002). https://doi.org/10.1002/bdd.325
  45. Abraham, M. H., Takacs-Novak, K. and Mitchell, R. C. : On the partition of ampholytes: application to blood-brain distribution. J. Pharm. Sci. 86, 310 (1997). https://doi.org/10.1021/js960328j
  46. Van de Waterbeemd, H. and Gifford, E. : ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. 2, 192 (2003). https://doi.org/10.1038/nrd1032
  47. Ertl, P., Rohde, B. and Selzer, P. : Calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. In Rational Approaches to Drug Design, Holtje, H.-D., Sippl, W. (eds.), Prous, Barcelona, p. 451 (2001).