Occurrence and Deformation of Fe-Ti ores from the Proterozoic Hadong Anorthosites, Korea

원생대 하동회장암체 내 철-티탄 광체의 산상과 변형

  • Jung, Jae-Sung (Department of Geological Sciences, Pusan National University) ;
  • Kim, Jong-Sun (Department of Geological Sciences, Pusan National University) ;
  • Cho, Hyeong-Seong (Department of Geological Sciences, Pusan National University) ;
  • Song, Cheol-Woo (Department of Geological Sciences, Pusan National University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University) ;
  • Ryoo, Chung-Ryul (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chi, Sei-Jeong (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, In-Soo (Department of Geological Sciences, Pusan National University)
  • 정재성 (부산대학교 지구환경시스템학부) ;
  • 김종선 (부산대학교 지구환경시스템학부) ;
  • 조형성 (부산대학교 지구환경시스템학부) ;
  • 송철우 (부산대학교 지구환경시스템학부) ;
  • 손문 (부산대학교 지구환경시스템학부) ;
  • 류충렬 (한국지질자원연구원) ;
  • 지세정 (한국지질자원연구원) ;
  • 김인수 (부산대학교 지구환경시스템학부)
  • Received : 2010.01.18
  • Accepted : 2010.02.26
  • Published : 2010.03.31

Abstract

Nearly NS-trending Fe-Ti ore bodies intermittently occur in the Hadong anorthosites, south Korea, irrespective of the rock types of the anorthosites. In order to determine their occurrence mode and deformation history, we collected the features of occurrence and geological structures in the field, petrographic features using thin sections of the principal constituent rocks, and geochemical data of ilmenites in the ore body using electron probe microanalysis. Fe-Ti ore bodies examined in this study are divided into two types: dike- and lamina-types. It is steadily supported that the dike-type has intruded into the anorthositic rocks after their emplacement and solidification. And the laminar-type is probably a result of the mylonitization and transposition of the dike-type ore bodies parallel to the shear planes, due to later strong dextral ductile shearing. In the meantime, the Fe-Ti ore bodies have experienced the stronger dextral shearing in the more northern part of the study area, i.e. Cheongryong-ri, Wolhoeng-ri, Jonghwa-ri, and Jayangri and Baekun-ri in ascending order of its strength, together with the less content of $TiO_2$. All ilmenites of the ore bodies have very similar chemical composition, as pure ilmenite of 52~55 wt.% in $TiO_2$ content, irrespective of the occurrence mode and degree of later ductile shearing of the ore bodies. And they didn't experience to exsolve into magnetite. The structural data indicate that the Hadong anorthosites have deformed by NNE-trending folding, intrusion of the Fe-Ti ore bodies, NNW~NNE-trending dextral ductile shearing, NW~NNW-trending sinistral semi-brittle shearing, and intrusion of NNE~NE-trending mafic dykes in descending order of chronology after the formation of foliation of the anorthositic rocks. The foliation is interpreted as a result of the accumulation of crystals that settle out from the magma by the action of gravity.

한반도 남부 원생대 하동회장암체 내에는 주변 회장암의 암상과 무관하게 대략 남북방향으로 단속적으로 철-티탄 광체들이 출현한다. 이들 광체의 야외산상과 변형사를 밝히기 위하여 야외기재학적 특징과 주변 지질구조 분석 그리고 주요 암석과 광체 내 티탄철석에 대한 박편관찰과 전자현미분석을 실시하였다. 이번 연구의 대상 광체는 맥상과 층상 광체로 구분된다. 맥상 광체는 회장암체가 정치 고화된 이후에 관입하였음이 확실시되며, 층상 광체는 후기의 강력한 우수향 연성 전단작용에 의해 상대적으로 규모가 큰 맥상 광체가 압쇄암화 되고 전단엽리와 평행하게 전위된 결과로 해석된다. 철-티탄 광체는 청룡리, 월횡리, 종화리, 자양리와 백운리의 순서로 남에서 북으로 갈수록 후기 우수향 연성 전단변형을 많이 받았으며, 광체 내 티탄철석의 함량은 감소하는 특징을 보인다. 광체 내 티탄철석은 야외산상과 후기 전단변형의 정도와 무관하게 유사한 화학조성을 가지며, $TiO_2$ 함량이 52~55 wt.% 내외로 자철석으로 용리되지 않은 순수한 티탄철석의 화학조성을 보여준다. 야외 지질구조 자료들을 분석하면, 하동회장암체는 마그마의 분화작용으로 만들어진 누적 엽리의 생성 이후에 북북동-남남서 습곡, 철-티탄 광체의 관입, 북북서~북북동 우수향 연성 전단작용, 북서~북북서 좌수향 아취성 전단작용, 그리고 북북동~북동 방향의 염기성 마그마의 관입의 순서로 변형된 것으로 판단된다.

Keywords

References

  1. 강희철, 김인수, 손문, 2001, 하동-산청지역에 분포하는 고 원생대 말의 회장암질암에 대한 잔류자기 연구. 지질학회지, 37, 269-286.
  2. 고보균, 2006, 하동-산청 회장암복합체의 성인에 대한 암석학적.지화학적 연구. 강원대학교 박사학위논문, 154p.
  3. 고상모, 유장한, 김용욱, 이한영, 김수영, 송민섭, 2003, 하동-산청-합천지역 심성암체의 티타늄과 장석자원 탐사 및 광상평가. 한국지질자원연구원 보고서, KR-03(c)-16, 70p.
  4. 김남장, 강필종, 1965, 한국지질도(1:50,000) 진교도폭 및 설명서, 국립지질조사소, 33p.
  5. 김동연, 송용선, 박계헌, 2002, 지리산 동부 지역에 분포하는 차노카이트의 변성작용과 성인에 관한 연구. 암석학회지, 11, 138-156.
  6. 김성욱, 최은경, 김인수, 1999, 하동-산청 지역에 분포하는 회장암질암에 대한 대자율 비등방성 연구. 지구물리, 2, 169-178.
  7. 김수영, 서정률, 1990, 하동 및 울진 지역 Ti-REE 및 Li 광물에 대한 광상 및 시추탐사 연구. 희유금속광물자원 조사연구 보고서, 한국동력자원연구소, KR-90-2D-1, 112p.
  8. 김수영, 서정률, 양정일, 김상배, 1991, 하동-울진지역 희유 금속 광물자원 조사연구. 희유금속광물자원조사연구 보고서, 한국자원연구소, KR-91-2D-1, 156p.
  9. 박계헌, 김동연, 송용선, 2001, 지리산 지역 차노카이트와 함티탄철석 회장암질암의 Sm-Nd 광물연대 및 성인적 관계. 암석학회지, 10, 27-35.
  10. 서정률, 박성원, 이평구, 오민수, 이봉주, 1992, 하동지역 휘유금속 광물자원 조사연구. 희유금속광물자원조사연구 보고서, 한국자원연구소, KR-92-1C-2, 72p.
  11. 안성호, 김종선, 조형성, 송철우, 손문, 류충렬, 김인수, 2010, 한반도 남부 원생대 산청회장암체 내 암맥군의 분류와 상대연령. 지질학회지, 46, 13-30.
  12. 이상만, 1980, 지리산(하동-산청) 지역의 변성이질암의 변성작용에 관한 연구. 지질학회지, 16, 1-15.
  13. 이상만, 나기창, 이상헌, 박배영, 이상원, 1981, 소백산육괴 (동남부)의 변성암복합체에 대한 변성작용에 관한 연구. 지질학회지, 17, 169-188.
  14. 이종만, 정지곤, 김원사, 1999, 하동지역 회장암질암의 진화 및 함티타늄광체와 성인적 관련성에 대한 예비연구. 지질학회지, 35, 321-336.
  15. 전은영, 권성택, 1999, 서부 임진강대 고남산 지역의 고압 변성작용: 반시계 방향의 P-T-t 경로. 지질학회지, 35, 49-72.
  16. 정지곤, 김원사, 서병민, 1991, 경상분지 서부 인접 지역에 위치한 염기성 및 초염기성암의 성인에 관한 연구. 대한 지질학회 제 46차 정기학술대회 발표논문 요약, 지질학회지, 27, 530-531.
  17. 정지곤, 김원사, David H. Watkinson, 1989, 하동지역에 분포한 회장암질암의 구조와 티타늄광체의 산출상태. 지질학회지, 25, 98-111.
  18. 정지곤, 이상만, 1986, 하동-산청지역 회장암질암의 변성작용에 관한 연구. 이상만교수 송수기념 논문집, 87-106.
  19. 지세정, 고상모, 박상준, 고인세, 서정률, 김대엽, 유장한, 김수영, 이미정, 김용욱, 이재호, 김유동, 이한영, 김인준, 허철호, 류충렬, 2008, 국내 전략광물자원 재평가와 광상 탐사 요소기술 개발. 한국지질자원연구원 보고서, GP2007-017-2008(2), 121-157.
  20. Ashwal, L.D., 1982, Mineralogy of mafic and Fe-Ti oxiderich differentiates of the Marcy anorthosite massif, Adirondacks, New York. Am. Mineral., 67, 14-27.
  21. Ashwal, L.D., 1993, Anorthosites. Springer, Berlin, 422p.
  22. Areback, H. and Stigh, J., 2000, The nature and origin of an anorthosite associated ilmenite-rich leuconorite, Hakefjorden Complex, south-west Sweden. Lithos, 51, 247-267. https://doi.org/10.1016/S0024-4937(99)00070-5
  23. Barker, D.S., 1983, Igneous rocks. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 417p
  24. Charlier, B., Duchesne, J.-C. and Auwera, J.V., 2006, Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti ores in massif-type anorthosites. Chemical Geology, 234, 264-290. https://doi.org/10.1016/j.chemgeo.2006.05.007
  25. Charlier, B., Sakoma, E., Sauve, M., Stanaway, K., Auwera, J.V. and Duchesne, J.-C., 2008, The Grader layered intrusion (Havre-Saint-Pierre Anorthosite, Quebec) and genesis of nelsonite and other Fe-Ti-P ores. Lithos, 101, 359-378. https://doi.org/10.1016/j.lithos.2007.08.004
  26. Duchesne, J.C., 1984, Massif anorthosites: another partisan review. In: Brown, W.L. (ed.) Feldspars and Feldspathoids. NATO ASI C137, Kluwer Academic, 411-433.
  27. Duchesne, J.C., Roelandts, I., Demaiffe, D. and Weis, D., 1985, Petrogenesis of monzonoritic dykes in the Egersund Ogna anorthosite (Roganland, S.W. Norway): trace elements and isotopic (Sr, Pb) constraints. Contrib. Mineral. Petrol., 90, 214-225. https://doi.org/10.1007/BF00378262
  28. Emslie, R.F., 1985, Proterozoic anorthosite massifs. In: Tobi, A.C. & Touret, J.L.R. (ed.) The deep Proterozoic crust in the north Atlantic provinces. NATO ASI C158, Kluwer Academic, 39-60.
  29. Hebert, C., Cadieux, A.-M. and van Breemen, O., 2005, Temporal evolution and nature of Ti-Fe-P mineralization in the anorthosite-mangerite-charnockite-granite (AMCG) suites of the south-central Grenville Province, Saguenay-Lac St. Jean area, Quebec, Canada. Can. J. Earth Sci., 42, 1865-1880. https://doi.org/10.1139/e05-050
  30. Jeong, J.G., 1980, Petrogenesis of anorthosite and related rocks in Hadong-Sancheong district, Korea. Ph. D. dissertation, Seoul National University, 153p.
  31. Jeong, J.G., 1982, Petrology studies on anorthositic rocks in Hadong-Sancheong district, Korea. J. Geol. Soc. Korea, 18, 83-108
  32. Kolker, A., Frost, C.D., Hanson, G.N. and Geist, D.J., 1991, Nd, Sr, and Pb isotopes in the Maloin Ranch pluton, Wyoming: implications for the origin of evolved rocks at anorthosite margins. Geochim. Cosmochim. Acta, 55, 2285-2297. https://doi.org/10.1016/0016-7037(91)90104-D
  33. Kolker, A., Hanson, G.N. and Lindsley, D.H., 1990, Geochemical evolution of the Maloin Ranch pluton, Laramie Anorthosite Complex, Wyoming: trace elements and petrogenetic models. Am. Mineral., 75, 572-588.
  34. Kwon, S.T. and Jeong, J.G., 1990, Preliminary Sr-Nd isotope study of the Hadong-Sancheong anorthositic rocks in Korea: implication for their origin and for the Precambrian tectonics. J. Geol. Soc. Korea, 26, 341-349.
  35. McLelland, J., Ashwall, L. and Moore, L., 1994, Composition and petrogenesis of oxide-, apatite-rich gabbronorites associated with Proterozoic anorthosite massifs: examples from the Adirondack Mountains, New York. Contrib. Mineral. Petrol., 116, 225-238. https://doi.org/10.1007/BF00310702
  36. Mitchell, J.N., Scoates, J.S., Frost, C.D. and Kolker, A., 1996, The Geochemical evolution of anorthosite residual magmas in the Laramie Anorthosite Complex, Wyoming. J. Petrol., 37, 637-660. https://doi.org/10.1093/petrology/37.3.637
  37. Morse, S.A., 1982, A partisan review of Proterozoic anorthosites. Am. Mineral., 67, 1087-1100.
  38. Mueller, R.F. and Saxena, S.K., 1977, Chemical petrology. Springer-Verlag, New York, 394p.
  39. Rogers, J.J.W. and Santosh, M., 2004, Continents and Supercontinents. Oxford University Press, 289p.