전해환원공정에서 $Y_2O_2$ 코팅층의 부식거동

Corrosion Behavior of $Y_2O_3$ Coating in an Electrolytic Reduction Process

  • 투고 : 2009.12.15
  • 심사 : 2010.03.02
  • 발행 : 2010.03.30

초록

산화물 사용 후 핵연료를 처리하는 전해환원공정에서는 LiCl 용융염계에서 산소가 생성되는 반응을 수반하게 되며, 생성된 산소로 인해 반응기의 구조재료를 상당히 부식시킬 수 있는, 화학적으로 심각한 반응환경을 조성한다. 따라서, 고온 용융염을 다루는 전해환원 공정장치를 위해서는 최적의 재료를 선택하는 것이 필수적이다. 본 연구에 서는 리튬용융염, $675^{\circ}C$, 216시간동안 산화분위기에서 코팅이 안 된 초합금과 코팅된 초합금 시편의 고온 부식연구를 수행하였다. IN713LC 초합금 시편에 aluminized NiCrAlY bond 코팅 후 $Y_2O_3$ top 코팅을 하였다. 코팅이 안 된 초합금은 부식층의 빠른 성장응력과 열적응력에 의한 부식층의 박리로 명확한 무게손실을 보인다. 탑 코팅의 화학적 및 열적 안정성으로 인해 고온 리튬용융염을 다루는 구조재료의 부식 저항성이 증가함을 확인할 수 있었다.

The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.

키워드

참고문헌

  1. M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mantyla, "High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits", Corros. Sci. 46, pp. 1311-1331(2004). https://doi.org/10.1016/j.corsci.2003.09.026
  2. R. A. Rapp, "Hot corrosion of materials: a fluxing mechanism?", Corros. Sci. 44, pp. 209-221(2002). https://doi.org/10.1016/S0010-938X(01)00057-9
  3. J. G. Gonzalez, S. Haro, A. Martinez-Villafane, V. M. Salinas-Bravo, and J. Porcayo-Calderon," Corrosion performance of heat resistant alloys in $Na_{2}SO_{4}$-$V_{2}O_{5}$ molron sqalt", Mat. Sci. Eng. A 435-436, pp. 258-265(2006). https://doi.org/10.1016/j.msea.2006.06.138
  4. M. Spiegel, P. Biedenkopf, and H. J. Grabke, "Corrosion of iron base alloys and high alloy steels in the $Li_{2}CO_{3}$-$K_{2}CO_{3}$eutectic mixture", Corros. Sci. 39, pp. 1193-1210(1997). https://doi.org/10.1016/S0010-938X(97)00020-6
  5. B. Zhu, and G. Lindbergh, "Corrosion behavior of high-chromium ferritic steels in molten carbonate in cathode environment", Electrochim. Acta 46, pp. 2593-2604 (2001).
  6. B. P. Mohanty, and D. A. Shores, "Role of chlorides in hot corrosion of a cast Fe-Cr--Ni alloy. Part I: Experimental studies", Corros. Sci. 46, pp. 2893-2907 (2004). https://doi.org/10.1016/j.corsci.2004.04.013
  7. A. Ruh, and M. Spiegel, "Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCI-$ZnCl_2$ mixture", Corros. Sci. 48, pp. 679-695 (2006). https://doi.org/10.1016/j.corsci.2005.02.015
  8. J. E. Indacochea, J. L. Smith, K. R Litko, E. J. KareH, and A. G. Raraz, " High-Temperature Oxidation and Corrosion of Structural materials in Molten Chlorides", Oxid. Met. 55, pp. 1-16 (2001). https://doi.org/10.1023/A:1010333407304
  9. B. Wang, C. Sun, J. Gong, R. Huang, and L. Wen, "Oxidation behavior of the alloy IC-6 and protective coatings", Corros. Sci. 46, pp. 519-528 (2004). https://doi.org/10.1016/S0010-938X(03)00184-7
  10. Q. M. Wang, Y. N. Wu, P. L. Ke, H. T. Cao, J. Gong, C. Sun, and L. S. Wen, "Hot corrosion behavior of AIP NiCoCrAlY(SiB) coatings on nickel base superalloys", Surf. Coat. Technol. 186, pp. 389-397 (2004). https://doi.org/10.1016/j.surfcoat.2003.12.020
  11. R. Mobarra, A. H. Jafari, and M. Karaminezhaad, "Hot corrosion behavior of MCrA1Y coatings on IN738LC", Surf. Coat. Technol. 201. pp. 2202-2207(2006). https://doi.org/10.1016/j.surfcoat.2006.03.043
  12. B. S. Sidhu, and S. Prakash, "Evaluation of the corrosion behavior of plasma-sprayed $Ni_{3}Al$ coatings on steel in oxidation and molten salt environments at $90^{\circ}C$", Surf. Coat. Technol. 166, pp. 89-100 (2003). https://doi.org/10.1016/S0257-8972(02)00772-7
  13. X. Ren, and F. Wang, "High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing", Surf. Coat. Technol. 201, pp. 30-37 (2006). https://doi.org/10.1016/j.surfcoat.2005.10.042
  14. L. Zhao, M. Parco, and E. Lugscheidor, "High velocity oxy-fuel thermal spraying of a NiCoCrAlY alloy", Surf. Coat. Technol. 179, pp. 272-278(2004). https://doi.org/10.1016/S0257-8972(03)00818-1
  15. M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang, and L. S. Wen, "The preparation and hot corrosion resistance of gradient NiCoCrAlYSiB coatings", Surf. Coat. Technol. 200, pp. 3942-3949 (2006). https://doi.org/10.1016/j.surfcoat.2004.12.005
  16. C. H. Koo, C. Y. Bai, and Y. J. Luo, "The structure and high temperature corrosion behavior of pack aluminized coatings on superalloy IN-738LC", Mater. Chem. Phys. 86, pp. 258-268 (2004). https://doi.org/10.1016/j.matchemphys.2004.01.004
  17. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980).
  18. D. A. Jones, Principles and Prevention of Corrosion, Macmillan Publishing Company, New York, 1992.
  19. S. Ling, T. A. Ramanarayan and R. PetkovicLuton, "Computational modeling of mixed oxidation-carburization processes", Oxid. Met. 40, pp. 179-196 (1993). https://doi.org/10.1007/BF00665264
  20. Y. Harada, "High temperature Oxidation and High Temperature Corrosion of Metallic Materials: I. High Temperature Oxidation", Jpn. Therm. Spraying Soc. 33, pp. 128-134 (1996).
  21. E. N. Bunting, Phase Diagrams for Ceramists, M. K. Reser (Ed.) American Ceramic Society, Ohio (1964) 121.
  22. Y. N. Wu, P. L. Ke, Q. M. Wang, C. Sun, and F. H. Wang, "High temperature properties of thermal barrier coatings obtained by detonation spraying", Corros. Sci. 46, pp. 2925-2935(2004). https://doi.org/10.1016/j.corsci.2004.04.003
  23. A. M. Karlsson and A. G. Evans, "A numerical model for the cyclic instability of thermally grown oxides in thennal barrier systems", Acta mater. 49, pp. 1793-1804 (2001). https://doi.org/10.1016/S1359-6454(01)00073-8
  24. A. R. Shankar, U. K. Mudali, R. Sole, H. S. Khatak, and B. Raj," Plasma-sprayed yttria-stabilized zirconia coatings on type 316L stainless steel for pyrochemical reprocessing plant", J. Nucl. Mater. 372, pp. 226-232(2008). https://doi.org/10.1016/j.jnucmat.2007.03.175
  25. B. C. Wu, E. Chang, D. Tu, and S. L. Wang, "Microstructures, Properties and Failure Analysis of ($ZrO_2$-8wt.%$Y_{2}O_{3}$)/((Co, Ni)-Cr-Al-Y) Thermal barrier Coatings", Mat. Sci. Eng. A111, pp. 201-210(1989).