DOI QR코드

DOI QR Code

MEMS 스위치 기반 재구성 고출력 증폭기를 갖는 재구성 능동 배열 안테나 시스템

A Reconfigurable Active Array Antenna System with Reconfigurable Power Amplifiers Based on MEMS Switches

  • 명성식 (연세대학교 전기전자공학과) ;
  • 엄순영 (한국전자통신연구원 전파기술연구부) ;
  • 전순익 (한국전자통신연구원 전파기술연구부) ;
  • 육종관 (연세대학교 전기전자공학과) ;
  • ;
  • 임규태 ;
  • Myoung, Seong-Sik (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Eom, Soon-Young (Radio Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Jeon, Soon-Ik (Radio Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Wu, Terence (Georgia Electronic Design Center, Georgia Institute of Technology) ;
  • Lim, Kyu-Tae (Georgia Electronic Design Center, Georgia Institute of Technology) ;
  • Laskar, Joy (Georgia Electronic Design Center, Georgia Institute of Technology)
  • 발행 : 2010.04.30

초록

본 논문에서는 상용 초고주파 MEMS 스위치를 이용하여 세 개의 주파수 대역에서 재구성 동작이 가능한 주파수 재구성 능동 배열 안테나 시스템(Reconfigurable Active Array Antenna System: RAA System)을 제안하였다. MEMS 스위치는 삽입 손실 및 선형성 특성이 우수하고 격리도가 높아 주파수 재구성 시스템 구현 시, 재구성을 위한 스위치로 인한 성능 열화가 거의 없다는 장점이 있다. 제안된 주파수 재구성 능동 배열 안테나 시스템은 간단한 구조의 임피던스 매칭 회로(Reconfigurable impedance Matching Circuit: RMC)를 갖는 주파수 재구성 증폭기(Reconfigurable Front-end Amplifier: RFA)가 집적화 되어 있으며, 안테나 방사체(Reconfigurable Antenna Element: RAE)와 재구성 제어 보드(Reconfiguration Control Board: RCB)로 구성되어 있다. 본 논문에서 제안한 RAA 시스템은 850 MHz, 1.9 GHz, 3.4 GHz의 세 개 주파수로 재구성되어 동작하며, 안테나 방사체는 $2{\times}2$ 배열을 가지고 각각의 방사체는 광대역 다이폴 형태를 갖는다. 제작된 RAA 시스템은 실험을 통하여 그 타당성을 확인하였다.

In this paper, a novel frequency reconfigurable active array antenna(RAA) system, which can be reconfigurable for three reconfigurable frequency bands, is proposed by using commercial RF MEMS switches. The MEMS switch shows excellent insertion loss, linearity, as well as isolation. So, the system performance degradation of the reconfigurable system by using MEMS switches can be minimized. The proposed frequency reconfigurable active antenna system is consisted with the noble frequency reconfigurable front-end amplifiers(RFA) with the simple reconfigurable impedance matching circuits(RMC), reconfigurable antenna elements(RAE), as well as a reconfiguration control board(RCB) for MEMS switch control. The proposed RAA system can be reconfigurable for three frequency bands, 850 MHz, 1.9 GHz, and 3.4 GHz, with $2{\times}2$ array of the RAE having broadband printed dipole antenna topology. The validity of the proposed RFA as well as RAA is also presented with the experimental results of the fabricated systems.

키워드

참고문헌

  1. M. Madihian, "A band selection/switching technique for multi-mode wireless front-end transceivers", in Microwave and Optoelectronics Conference, 2001. IMOC 2001. Proceedings of the 2001 SBMO/IEEE MTT-S International, vol. 1, pp. 257-260, 2001. https://doi.org/10.1109/SBMOMO.2001.1008761
  2. S. S. Myoung, J. G. Yook, "Low-phase-noise highefficiency mimic VCO based on InGaP/GaAs HBT with the LC filter", Microwave and Optical Technology Letters, vol. 44, pp. 123-126, 2005. https://doi.org/10.1002/mop.20564
  3. S. S. Myoung, Y. P. Hong, Y. Lee, B. J. Jang, and J. G. Yook, "Miniaturised hairpin tunable filter with single control voltage", Electronics Letters, vol. 44, pp. 634-635, 2008. https://doi.org/10.1049/el:20080804
  4. J. de Mingo, A. Valdovinos, A. Crespo, D. Navarro, and P. Garcia, "An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system", Microwave Theory and Techniques, IEEE Transactions on, vol. 52, pp. 489-497, 2004. https://doi.org/10.1109/TMTT.2003.821909
  5. K. Hong-Teuk, J. Sanghwa, K. Kyungteh, P. Jae- Hyoung, K. Yong-Kweon, and K. Youngwoo, "Lowloss analog and digital micromachined impedance tuners at the Ka-band", Microwave Theory and Techniques, IEEE Transactions on, vol. 49, pp. 2394-2400, 2001. https://doi.org/10.1109/22.971626
  6. J. H. Sinsky, C. R. Westgate, "Design of an electronically tunable microwave impedance transformer", in Microwave Symposium Digest, 1997, IEEE MTT-S International, vol. 2, pp. 647-650, 1997. https://doi.org/10.1109/MWSYM.1997.602875
  7. L. Y. Vicki Chen, R. Forse, D. Chase, and R. A. York, "Analog tunable matching network using integrated thin-film BST capacitors", in Microwave Symposium Digest, 2004 IEEE MTT-S International, vol. 1, pp. 261-264, 2004. https://doi.org/10.1109/MWSYM.2004.1335862
  8. L. N. Pringle, P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches", Antennas and Propagation, IEEE Transactions on, vol. 52, pp. 1434-1445, 2004. https://doi.org/10.1109/TAP.2004.825648
  9. A. E. Fathy, A. Rosen, H. S. Owen, F. McGinty, D. J. McGee, G. C. Taylor, R. Amantea, P. K. Swain, S. M. Perlow, and M. ElSherbiny, "Silicon-based reconfigurable antennas-concepts, analysis, implementation, and feasibility", Microwave Theory and Techniques, IEEE Transactions on, vol. 51, pp. 1650-1661, 2003. https://doi.org/10.1109/TMTT.2003.812559
  10. B. A. Cetiner, H. Jafarkhani, Q. Jiang-Yuan, Y. Hui Jae, A. Grau, and F. De Flaviis, "Multifunctional reconfigurable MEMS integrated antennas for adaptive MIMO systems", Communications Magazine, IEEE, vol. 42, pp. 62-70, 2004. https://doi.org/10.1109/MCOM.2004.1367557
  11. S. Zhang, G. H. Huff, J. Feng, and J. T. Bernhard, "A pattern reconfigurable microstrip parasitic array", Antennas and Propagation, IEEE Transactions on, vol. 52, pp. 2773-2776, 2004. https://doi.org/10.1109/TAP.2004.834372
  12. M. K. Fries, M. Grani, and R. Vahldieck, "A reconfigurable slot antenna with switchable polarization", Microwave and Wireless Components Letters, IEEE, vol. 13, pp. 490-492, 2003. https://doi.org/10.1109/LMWC.2003.817148
  13. L. Yumin, D. Peroulis, S. Mohammadi, and L. P. B. Katehi, "A MEMS reconfigurable matching network for a class AB amplifier", Microwave and Wireless Components Letters, IEEE, vol. 13, pp. 437-439, 2003. https://doi.org/10.1109/LMWC.2003.818523
  14. W. C. E. Neo, X. Liu, Y. Lin, L. C. N. de Vreede, L. E. Larson, S. Spirito, A. Akhnoukh, A. de Graauw, and L. K. Nanver, "Improved hybrid SiGe HBT class-AB power amplifier efficiency using varactor- based tunable matching networks", in Bipolar/BiCMOS Circuits and Technology Meeting, 2005. Proceedings of the IEEE BCTM 7.2, pp. 108-111, 2005. https://doi.org/10.1109/BIPOL.2005.1555211
  15. J. Danson, C. Plett, and N. Tait, "Using MEMS capacitive switches in tunable RF amplifiers", Eurasip Journal on Wireless Communications and Networking, 2006.
  16. H. Okazaki, S. Narahashi, A. Fukuda, and T. Miki, "Band-reconfigurable high-efficiency power amplifier using MEMS switches", in Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, 2005. Proceedings. 2005 IEEE International Workshop on, pp. 83-86, 2005. https://doi.org/10.1109/RFIT.2005.1598879
  17. E. R. Brown, "RF-MEMS switches for reconfigurable integrated circuits", Microwave Theory and Techniques, IEEE Transactions on, vol. 46, pp. 1868-1880, Nov. 1998. https://doi.org/10.1109/22.734501
  18. T. Wu, R. L. Li, S. Y. Eom, K. Lim, S. I. Jeon, J. Laskar, and M. M. Tentzeris, "A multiband/ scalable reconfigurable antenna for cognitive radio base stations", in Antennas and Propagation Society International Symposium, 2008. AP-S 2008. IEEE, pp. 1-4, 2008. https://doi.org/10.1109/APS.2008.4619490
  19. H. Xing, S. Keller, Y. F. Wu, L. McCarthy, I. P. Smorchkova, D. Buttari, R. Coffie, D. S. Green, G. Parish, S. Heikman, L. Shen, N. Zhang, J. J. Xu, B. P. Keller, S. P. DenBaars, and U. K. Mishra, "Gallium nitride based transistors", Journal of Physics-Condensed Matter, vol. 13, pp. 7139-7157, 2001. https://doi.org/10.1088/0953-8984/13/32/317