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Abstract 

 
The field of lightweight cryptography has developed significantly over recent years and many 
impressive implementation results have been published. However these results are often 
concerned with a core computation and when it comes to a real implementation there can be 
significant hidden overheads. In this paper we consider the case of cryptoGPS and we outline a 
full implementation that has been fabricated in ASIC. Interestingly, the implementation 
requirements still remain within the typically-cited limits for on-the-tag cryptography. 
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1. Introduction 

Radio-frequency identification (RFID) tags are becoming a part of our everyday life and a wide 
range of applications from the supply chain to the intelligent home are often described in the 
literature. Yet, at the same time, security and privacy issues remain a major issue, not least in the 
battle against counterfeit goods with pharmaceutical products and even engine components in the 
automotive and aeronautic industries at risk [1]. 

It has long been recognized that cryptographic techniques might be used to help alleviate these 
problems. However they have all too often been considered as too expensive to implement, or too 
unsuited to the enviroment of use. Over recent years this view has begun to change and there have 
been substantial advances in cryptographic design, for instance in new block ciphers such as 
PRESENT [2]. But as well as the advances we might have expected in symmetric cryptography- 
which is typically viewed as the lightweight choice - there has been a growing understanding of 
which asymmetric techniques are available and how they might best be implemented. Indeed, 
given the essential nature of an RFID-based deployment with many (potentially unknown) players 
being involved - i.e. an open rather than a closed system - lightweight public-key cryptography 
could be viewed as a particularly attractive technology. Some of the more recent implementation 
results in the literature have been very impressive. The oft-cited opinion is that there are around 
2000-3000 gate equivalents (GE) available for on-tag security features, 1  and despite this 
representing a formidable challenge, several algorithms claim to achieve this. 

In this paper we highlight a problem with many of these estimates and we observe that figures 
are often given for the cryptographic core of a computation. For instance, estimates for the 
feasibility of elliptic curve cryptography might consider just the elliptic curve operation while 
implementation results for cryptoGPS are focused on the protocol computations [3][4]. This 
means that when it comes to a real implementation there can be significant hidden overheads. The 
main purpose of this paper is to highlight this issue, but also to reexamine the case of one particular 
proposal, that of cryptoGPS. To do this we will describe a full implementation of cryptoGPS 
which includes all the additional functionality that would be required in a real deployment. Further, 
noting that implementation results for lightweight cryptography are often derived from an FPGA 
implementation or ASIC synthesis tools, we have gone one step further and we report on the 
results of the full ASIC fabrication of a fully-supported version of cryptoGPS. 

2. Related Work 
Over recent years a lot of work on public key cryptography for RFID tags has centered around 
elliptic curves. A comparison between different ECC implementations is not always easy because 
the choice of the underlying curve determines both the efficiency and security of the algorithm. 
However no implementation has been published so far that comes under 5000 GE which would, 
even then, be too great for passive RFID tags. Instead several elliptic curve implementations with a 
significantly lower security level than 80-bit exist, but their size lies in the range of 10 000 GE or 
above [5][6][7]. 

Gaubatz et al. have investigated the hardware efficiency of the NTRUencrypt algorithm with 

                                                           
1 The gate equivalent (GE) is a unit of area and is equivalent to the physical space occupied by a logical NAND 
gate for the given manufacturing process. 
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the following parameter set (N, p, q) = (167, 3, 128) that offers a security level of around 57 bits 
[8][9][10]. Though their implementation requires only 2850 GE, it takes 29 225 clock cycles, 
which translates to 292 ms for the response to be computed at the typical clocking frequency of 
100 KHz. Further, it is noteworthy that more than 80% of the area is occupied with storage 
elements and that already a bit serial datapath is used. This implies that the opportunities for future 
improvement are very limited. Oren et al. propose a public key identification scheme called WIPR 
[11]. Their ASIC implementation requires 5705 GE and 66 048 clock cycles, though a proposed 
optimization suggests a reduced area requirement of around 4700 GE [12]. In this paper, however, 
we will concentrate on the cryptoGPS scheme. The name GPS is derived from the inventors 
Girault, Poupard, and Stern, but the term cryptoGPS is increasingly used to avoid confusion with 
the geographical positioning system. 

A description of the scheme and numerous variants can be found in [13][14][15]. It is 
standardised within ISO/IEC 9798-5 [16] and listed in the final NESSIE portfolio [17]. Some 
initial analysis of the ASIC implementation requirements for the elliptic-curve based variant of the 
cryptoGPS identification scheme are available [3][4]. There implementation estimates range 
between 300–900 GE, but they are only concerned with the core on-tag operation in cryptoGPS. A 
more complete implementation in the form of a fully-functioning FPGA prototype is described in 
[18]. But in moving from an FPGA implementation to a dedicated RFID-tag implementation there 
are many differences and  complications to consider and this is one of the goals behind this paper. 

2.1 This Paper 
This paper is organized as follows. First we introduce the cryptoGPS identification scheme and we 
provide a summary of some of the optimizations that are available. Then we turn to the question of 
how an implementation would look in reality and what additional functionality - over and above 
the core cryptoGPS computations - would be required. In Section 3 we describe the engineering 
and design challenges that needed to be overcome in designing an ASIC that incorporates three 
different (two round-based and one serialized) variants of the cryptoGPS scheme. In Section 4.3 
we discuss our results before we draw our conclusions in Section 5. 

3. The cryptoGPS identification scheme 
A public key identification scheme  allows the possessor of a secret key to prove possession of that 
secret by means of an interactive protocol [19]. Thus, in the case of an RFID deployment, the tag 
would “prove” to a reader that it contains a tag-specific secret and the reader is thereby assured that 
the tag is genuine. Only a device possessing the key could provide the necessary responses. While 
at first sight this might appear to be quite a specialised functionality, for instance we don’t have the 
conventional public key services of encryption or digital signatures2, interactive identification 
schemes have been deployed widely. In particular the cryptoGPS scheme seems to allow a 
particularly compact implementation on the tag. This allows us to consider RFID tags with public 
key capability which can open up previously unavailable application areas. 

3.1 Overview of cryptoGPS 
There are many variants and optimizations of cryptoGPS. One variant uses RSA-like moduli but 

                                                           
2 Identification schemes can be converted to signature schemes in a standard way [19] though some computational advantages 
can be lost. 
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here, and in Fig. 1, we illustrate the essential elements of cryptoGPS using elliptic curve 
operations. For the system as a whole there are the shared parameters of the elliptic curve C and a 
base point P on that curve. These are not required on the tag and so they do not impact our 
implementation. The cryptoGPS secret key s is stored on the tag and is assumed to be σ bits in 
length. The public key V = −sP is an elliptic curve point and we assume that this is available to the 
reader by some mechanism. To take full advantage of the optimizations described in Section 2.2 
the tag is required to support a pseudo-random generator (PRG) that uses a tag-specific secret key 
k. Note that k is required at initialisation to perform some pre-computation, but afterwards k is 
never needed outside the tag. Several parameter sizes need to be set and the appropriate choices 
will depend on the application and the security level. We have already mentioned σ which for a 
security level of 80 bits is set to σ = 160. The length of the challenge c from the reader to the tag 
will be denoted δ and the particular value will depend on different optimizations. The length of the 
pseudo-random numbers ri will be denoted ρ and it is a requirement of cryptoGPS that we set ρ = σ 
+ δ + 80. 
 

 
Fig. 1. An overview of the elliptic curve-based variant of cryptoGPS with most available optimizations 

implemented 

3.2 Implementing cryptoGPS in theory 
Of particular practical interest are a series of optimizations designed to ease the computation and 
storage costs of cryptoGPS implementation. 

– One important optimization is the use of coupons. In Girault describes a 
storage/computation trade-off for cryptoGPS that uses t coupons, each consisting of a pair 
(ri , xi ) for 1 ≤ i ≤ t  [20]. These coupons are stored on the tag before deployment. Fig. 1 
shows a general overview of the elliptic curve-based variant of cryptoGPS where both 
pre-computation and reader verification use a hash function HASH giving h-bit outputs. 
However when coupons are used neither the elliptic curve operation nor the hash function 
are needed on the tag. 

– As a further improvement to the storage costs of coupons, we can generate the ri using a 
keyed pseudo-random generator PRGk as described in [16][21]. This is done at the time of 
tag manufacture, and then the necessary ri can be re-computed on the tag at the time of 
verification. 
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– The on-tag computation y = ri + sc can be optimised by using what is termed a Low 
Hamming Weight (LHW) challenge [22]. This effectively turns the integer multiplication 
into a few simple integer additions. 

3.3 Using coupons 
The combination of coupons and the LHW challenge lends cryptoGPS its advantageous 
performance. Yet coupons are not to everyone’s taste. 

The usual argument against coupons is the storage cost. Certainly the first generation UHF 
RFID tags being prototyped do not have enough memory to support coupons. However it is 
important to observe that current tags use old fabrication technology since this is the cheapest. As 
advances in digital architecture are incorporated, i.e. as tag manufacturers move towards the 
typical architectures we encounter in consumer devices today, there will be more room on the tag 
for enhanced digital functionality and memory. Interestingly, many use-cases would directly 
benefit from increased memory since this allows, for example, information to be added to the tag 
as it moves through the supply chain. Indeed, we see for certain niche applications that large 
amounts of memory is a top priority [23]. One can also consider more advanced application 
scenarios.  

For instance, there appears to be no reason why coupons should necessarily be carried on the tag. 
Instead it is possible to envisage situations where coupons are delivered directly or cached on the 
interrogator/reading device perhaps along with the public key.  

In such situations there are no additional on-tag memory requirements, though there could be 
some additional application-level issues to address in the management coupon use. However, even 
if we leave aside such advanced applications, the use of coupons ideally captures today’s typical 
environment of use; we want aggressive and cheap performance on the tag and in most 
applications RFID tags will only be verified a moderate number of times, perhaps over several 
hops in the supply chain. After this the tag would be thrown away or deactivated as is currently 
recommended in a variety of policy statements on privacy. 

3.4 Implementing cryptoGPS in practice 
In abstract terms, Section 2.2 gave an outline of how we would implement cryptoGPS. But these 
optimizations carry their own problems and it is a task of some difficulty to arrive at a good 
solution in practice. 
Implementing the LHW challenge. In order to avoid the rather demanding (σ × δ)-bit 
multiplication that is required, it is possible to use a series of simple additions [22]. For this 
purpose it is required to turn the challenge c into a Low Hamming Weight (LHW) challenge such 
that at least σ − 1 zero bits lie between two subsequent 1 bits [22]. hen using binary representations 
of the multiplicands it is easy to see that multiplications can be performed using the basic 
Shift-And-Add multiplication algorithm [24]. When a bit of the input challenge c is 0, the 
multiplicand s is shifted to the left by one position. When the input challenge c is 1, the 
multiplicand s is shifted to the left and the result is added (with carry) to the multiplicand s. This 
way a complete multiplication can be reduced to simple shiftings and additions. Since in our case 
we use a low Hamming weight challenge that has all 1 bits at least σ − 1 zero bits apart, it is 
ensured that there is no overlap in subsequent additions of s. In other words s is never added more 
than once at the same time. In our implementation the secret is of size σ = |s| = 160 and the 
challenge c is of length δ = |c| = 848 with a Hamming weight of 5. The specifications of 
cryptoGPS state that the parameters are typically set to ρ = |r| = σ + δ + 80 and so for our chosen 
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i ni ci,2 ci,1 P (i) 
0
1
2
3
4

0x20
0xC1
0xA2
0xE3
0x44

001
110
101
111
010

00000
00001
00010
00011
00100

8 · 0 + 1 = 1
1 + 160 + 8 · 1 + 6 = 175

175 + 160 + 8 · 2 + 5 = 356
356 + 160 + 8 · 3 + 7 = 547
547 + 160 + 8 · 4 + 2 = 741

values, achieving a probability of impersonation of 2−32 requires δ = 848 bits [22]  and this leads to 
ρ = |r| = 160 + 848 + 80 = 1088 bits. However 848 bits is quite a long challenge to transmit from 
the reader to the tag, and so work in  has considered this issue [18][24]. In particular two encoding 
schemes have been proposed that require that we use only 40 bits to encode the complete 848-bit 
challenge c. We build on this work and in our implementation we will use a modified variant of the 
encoding scheme that was proposed for the 8-bit architecture in[22]. In particular it assumes that 
the challenge c is represented as five 8-bit chunks ni so that c = n4||n3||n2||n1||n0. Then, each ni  
consists of the 5-bit number ci,1 and the 3-bit number ci,2, and so ni = ci,2||ci,1 and these are used to 
encode the exact position of one of the five non-zero bits of the 848-bit low Hamming weight 
challenge. In particular, the positions p0,…,p4 of the non-zero bits of the challenge c can be 
calculated using the following equations: 

     (1) 
Consider two example challenges Ccomp,1 and Ccomp,2. The all-zero compact transmitted challenge 
Ccomp,1 gives the following ci,1 and ci,2 , from which it is easy to compute P(i) using Section 2.4.1 
 

i ni ci,2 ci,1 P (i)
0 
1 
2 
3 
4 

0x00 
0x00 
0x00 
0x00 
0x00 

000 
000 
000 
000 
000

00000 
00000 
0000 
00000 
00000 

0 
160 
320 
480 
640

 n4 n3 n2 n1  n0 
Ccomp,1 = 00 00 00 00 00 

 
We can then recover the whole 848-bit challenge c as:3 
 
 864 832 800 768 736 704 672 

Ccomp,1 =  00000000  00000000 00000000 00000000 00000000 
 
00000000  

 
00000000 

 640 608 576 544 512 480 448 
 00000001  00000000 00000000 00000000 00000000 00000001  00000000 
 416 384 352 320 288 256 224 
 00000000  00000000 00000000 00000001 00000000 00000000  00000000 
 192 160 128 96 64 32 0 
 00000000  00000001 00000000 00000000 00000000 00000000  00000001 

 
For the second example, set Ccomp,2. as shown below, which leads to the associate values of P(i): 
 
 
 
 n4 n3 n2 n1  n0 
Ccomp,2 = 44 E3 A2 C1 20 

 
 
                                                           
3Note that throughout this example we padded the challenge with 48 zeros to the left in order to gain a multiple of 64  
(848 + 48 = 896 = 14 × 64). 
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The associated challenge, in hexadecimal notation, is then given as: 
 
 
 864 832 800 768 736 704 672 

Ccomp,2 =  00000000  00000000 00000000 00000000 00000020 00000000   00000000  
 640 608 576 544 512 480 448 

 00000000  00000000 00000000 00000000 00000008 00000000  00000000  
 416 384 352 320 288 256 224 

 00000000  00000000 00000010 00000000 00000000  00000000  00000000  
 192 160 128 96 64 32 0 

 00000000  00008000 00000000 00000000 00000000  00000000  00000002  
 
Using a PRG. Storing coupons cost memory and in both hardware and software implementations 
for embedded devices this can be a significant cost factor. Hence, the size of the coupons limits the 
number of available coupons for a given amount of memory or increases the cost. One approach 
uses a hash function to reduce the size of the xi that need to be stored [21]. A second improvement 
is to observe that, above a certain threshold, it can be cheaper to implement a way of re-generating 
the ri than to store them. The ISO standard 9798  suggests using a tag-specific keyed PRG for 
doing this [16]. While there are a variety of lightweight algorithms available we decided to use the 
lightweight block cipher PRESENT in an appropriate mode to regenerate the ri  [25][26]. The most 
efficient choice was to use the output feedback mode (OFB) for our cryptoGPS implementations 
[27]. Clearly care needs to be taken to manage the state of the cipher between calls to the tag to 
ensure that no repetitions in ri are generated. 
Summary. The following optimizations have been considered for this prototype: 

1. Coupons are used to avoid hash and elliptic curve operations on the tag. 
2. LHW challenges are used to reduce the on-tag (σ × δ)-bit multiplication to simple additions. 
3. Compact encodings of the LHW challenge are used to reduce the transmission time. 
4. A PRG is used to eliminate the need to store the ri. 
The implementations to be described in Sections 3.1 and 3.2 take the complete compact 

challenge c and a 64-bit initialization vector IV at the beginning of the computation. Though the 
secret s will be fixed in practical applications we also implemented a version with variable s. This 
gave us the flexibility for additional testing. The 64-bit IV was used to initialize a PRESENT-80 
core in OFB mode. At the end of one run, i.e. after 17 complete iterations of PRESENT (since 
17×64 = 1088), the ASIC outputs the internal state of the present core, allowing the state to be 
managed for the next run. In total, we implemented three different architectures. 

1. One variant with a round-based PRESENT-80 core, an internal datapath of 8 bits and a 
fixed secret s. We refer to this variant as GPS-64/8-F and describe the implementation in 
Section 3.1. 

2. A second variant uses a serialized PRESENT-80 core instead of a round-based one. For this 
variant it is advantageous to use an internal datapath of 4 bits. Again this was implemented 
with a fixed secret s. Details for the variant GPS-4/4-F are provided in Section 3.2. 

3. A third variant returned to the round-based approach but allowed the secret s to be updated. 
This covers the few applications where one might envisage changing the key and it allows 
for some additional testing. This third variant, referred to as GPS-64/8-V, uses a 
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round-based PRESENT-80 core, an internal datapath of 8 bits and a variable secret s, see 
Sections 3.1. 

4. Hardware architectures of cryptoGPS 
In this section we provide more details on the two round-based implementations, denoted 
cryptoGPS-64/8-F and cryptoGPS-64/8-V, before we describe the serialized implementation 
cryptoGPS-4/4-F. During our work the design of the prototype board posed several challenging 
limitations and these are discussed in Section 4.2.                                                                                                 

As we will see, one issue is that the fabricated chips were mounted on a board and a 
microcontroller used to simulate the remaining parts of an RFID tag. These components needed to 
be synchronized and a handshake protocol was implemented. This is referred to in the sections that 
follow since we need to identify where this created a moderate performance overhead. 

 
Fig. 2. Top-level architecture of the cryptoGPS-cores cryptoGPS-64/8-F and -64/8-V (left) and 

cryptoGPS-4/4-F (right) 

4.1 Round-based implementations 

The architecture of cryptoGPS-64/8-F is depicted in Fig. 2. We use a round-based implementation 
of PRESENT, a Controller component, a full-adder component Addwc for the cryptoGPS 
computation, and S_Storage for holding the tag secret s. The variant cryptoGPS-64/8-V uses 
essentially the same architecture although the storage of s is handled differently. Here we describe 
these different components in detail and the relative space they occupy within the manufactured 
ASIC is nicely illustrated in Fig. 12. 

The controller consists of four separate but interacting FSMs each one for the central control, 
I/O, S_Storage, and PRESENT (see Fig. 3 - 6). It requires 64 clock cycles to initialize the ASIC 
and to load the values IV, cin , and s. In the round-based version it requires 32 cycles to create 64 
pseudo-random bits using PRESENT and to add it with the appropriate chunk of the secret s. Due 
to the handshaking protocol, it then requires 64 cycles to output the result in 8-bit chunks. Since we 
have to compute 1088 bits, we have to repeat this procedure another 16 times. Finally, the internal 
state of PRESENT needs to be stored outside the ASIC so that it can be used as the new IV for the 
next iteration of cryptoGPS. In total, including I/O overhead, it takes (17 × (32 + 32)) + 32 = 1120 
clock cycles for one complete run of cryptoGPS. If we assume a more realistic scenario where the 
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cryptoGPS module is part of an integrated circuit, i.e. on an RFID tag, then there is no need for a 
handshaking protocol and only 724 cycles are required. 

 
Fig.  3. Central FSM of all cryptoGPS variants 

 

 
Fig. 4. I/O FSM of all cryptoGPS variants  

 

 
Fig. 5. FSM of the storage component of all cryptoGPS variants 

 

  
Fig. 6. FSM of the round-based present core of GPS-64/8-F and GPS-64/8-V 
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The Addwc component (see Fig. 7) consists of a flip-flop to store the carry bit and a ripple carry 
adder in order to keep the area requirements to a minimum. For the round-based variants 
GPS-64/8-F and GPS-64/8-V it has a datapath width of 8 bits, i.e. two 8-bit input values are added. 

 
 Fig. 7. Architecture of the adder component of all cryptoGPS variants 

 
The architecture of the S_Storage component for a fixed secret s consists of an 8-bit AND gate, 
an 8-bit OR gate, a gated register with 8-bit input, and an 8-bit 20-to-1 MUX (see Fig. 8). These 
require 11, 11, 48 and 249 GE respectively, in total 319 GE. The appropriate 8-bit chunk of s is 
chosen by MUX and it is combined using AND with an 8-bit signal denoted n_zero. In fact n_zero 
is an eight-fold replication of a single bit and so n_zero can either be set to 00000000 or 11111111. 
This way the resulting value a is either set to 8-bits of s or 00000000 before being processed by the 
shifting component. To start, the input value a is appended to the string 00000000 to yield the 
intermediate state b and this is rotated by c2 positions to the left. Since c2 has three bits the shifting 
offset varies between 0 and 7. Finally it outputs two 8-bit values c and d, which consist of the eight 
most significant (c) and the eight least significant (d) bits of b, the internal state. The value c is 
stored in an 8-bit gated register and d is combined using OR with the output of the gated register.  

 
Fig. 8. Architecture of the storage component of GPS-64/8-F with a fixed secret s 

 
Varying the secret s. To allow for additional testing we implemented one version of cryptoGPS 
with a key s that can be changed. This would not be the typical implementation in practice since 
the key for an RFID tag is normally set at the time of manufacture and cannot be changed. Adding 
this feature clearly imposes an additional cost: in our prototype the area overhead is 54%, mainly 
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due to the additional storage for the secret, but also due to a more complex finite state machine (see 
Table 1). 

The S_Storage component that supports variable secrets s consists of an 8- bit 4-to-1 input 
MUX, an 8-bit 3-to-1 output MUX, an 8-bit AND, an 8-bit OR and 22 gated shifting registers that 
each store 8 bits (see Fig. 9). Twenty of these shifting registers are required to store the complete 
secret s while the remaining two are required to temporarily store the shifted values for the next 
addition cycle. This additional logic increases the area requirements for the S_Storage 
component more than ninefold to nearly 1500 GE making it too expensive for practical 
applications. 

 
Fig. 9. Architecture of the storage component of GPS-64/8-v with a variable secret s 

4.2 Serialized implementations 

To reduce the space demands we explored a serialized version of PRESENT-80 implementation 
(see Fig. 2). While the general form of the PRESENT and the Addwc components are relatively 
unchanged, the Controller and the S_Storage components are different and we describe 
them in more detail. Further, since the internal datapath of this variant is 4 bits, and since the 
outputs of the PRESENT, S_Storage, and Addwc components are 4-bits wide, the 4-bit output 
signal data_out is padded with 0000 to fit the 8-bit I/O interface. 

 
Fig. 10. Architecture of the storage component of GPS-4/4-F with a fixed secret s 
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Fig. 10 depicts the architecture of the S_Storage component for a fixed secret s and an internal 
4-bit datapath. The main difference to the S_Storage component of the round-based variant 
cryptoGPS-64/8-F (see Fig. 8) is that it splits the 8-bit output value into two 4-bit chunks. 
Dependent on a counter value it outputs either the higher or the lower nibble. 
 

 
Fig. 11. FSM of the serialized present core of the GPS-4/4-F variant 

 
Three out of four FSMs of the Controller module are similar to those used for the round-based 

variants. However the FSM of the serialized PRESENT-80 component is significantly more 
complex than a round-based implementation (see Fig. 11). It requires 64 clock cycles to initialize 
the ASIC and load the values IV, cin and s. In the serialized version it requires 563 cycles to create 
64 pseudo-random bits by the present component and to add it to the appropriate chunk of the 
secret s. Here we encounter an artificial delay since, due to the design of the board (see Section 4.2), 
it requires 64 cycles to output the result in 4-bit chunks. Since we have to compute 1088 bits, we 
have to repeat this procedure another 16 times. Finally the internal state of the present component 
has to be stored outside the ASIC as the new IV for the next iteration of cryptoGPS. So in total, 
including the I/O overhead, it takes 17 · (527 + 64) + 64 = 10, 111 clock cycles for one complete 
run of cryptoGPS. Without the overhead this drops to 9, 319 cycles. 

5. Implementation of cryptoGPS 
ASIC fabrication is notoriously expensive and poses a formidable barrier. For our ASIC 
implementation of cryptoGPS we took advantage of the facilities provided by IHP 
Microelectronics4 which offer so-called multi-design ASICs. Here different designs from different 
customers are bundled on the same wafer, and this permits significant cost savings for the 
production of the lithographic mask, which in turn allows us to fabricate designs for a very limited 
budget. 

5.1 Communication between ASIC and board 
One requirement of the shared design ASIC was that all variants have the same I/O pins. In order 
to have the possibility of using a small packaging we tried to use as few pins as possible. Beside 
the mandatory pins for power supply we decided to use the following 20 I/O pins: clk, n_reset, rx 
as the input channel and tx as the output channel of the ASIC for the I/O handshake protocol, 
data_in is used to load values in 8-bit chunks into the ASIC and data_out is used to output the 
result in 8-bit chunks. 

Since the microcontroller (µC) is clocked independently from the ASIC, both components have 
                                                           
4 Innovations for High Performance Microelectronics, Frankfurt/Oder, Germany. 
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to be synchronized when they are communicating. Therefore a handshake protocol with the 
following steps was implemented (see Fig. 12): 

1. µC sets input data 
2. wait until input data valid 
3. µC sets tx to ‘0’ indicating that input data are valid 
4. wait until ASIC notices that input is valid (IO_READ_WAIT) 
5. ASIC sets rx to ‘0’ indicating that input is being read (IO_READ_INPUT) 
6. ASIC reads input (IO_READ_INPUT) 
7. ASIC sets rx to ‘1’ indicating the successful read of input (IO_READ_ACK) 
8. wait until µC notices that rx was set to ‘1’ 
9. µC sets tx to ‘1’ thus finishing the input procedure 
10. ASIC computes the response 
11. ASIC sets rx to ‘0’ indicating that output data are valid (IO_WRITE_WAIT) 
12. wait until µC notices that output is valid (IO_WRITE_WAIT) 
13. µC sets tx to ‘0’ indicating that output is being read 
14. µC reads output (IO_WROTE_OUTPUT) 
15. µC sets tx to ‘1’ indicating that the output was successfully read 
16. wait until ASIC notices that tx was set to ‘1’ 
17. ASIC sets rx to ‘1’ thus finishing the output procedure. 

 

 
Fig. 12. Signal flow of the handshake protocol for communication between board and cryptoGPS ASIC 

5.2 The cryptoGPS proof-of-concept prototype board 
While the work in this paper demonstrates that a full implementation of cryptoGPS on an RFID 
tag is both feasible and, in terms of silicon, economically viable, our implementations still fall 
short of a fully functioning RFID tag. There is no radio/communication interface. This shortfall 
has no impact on the conclusions that can be drawn; indeed it serves to illustrate just how close to a 
prototype RFID tag we are. Nevertheless this communication with the outside world needs to be 
provided for testing and evaluation purposes. To achieve this the fabricated chips were mounted 
on a board and an ATMEL ATmega32a [28]. microcontroller, denoted µC, was used to simulate 
the remaining parts of an RFID tag. As such it provides the ASIC with the challenge cin (and the 
secret s for the variant that allowed a variable secret) and receives the output of the ASIC. Since the 
microcontroller is clocked independently of the ASIC, these two components have to be 
synchronized when they are communicating. For this reason the handshake protocol described in 
Section 4.1 was implemented, and this lead to an increase of around 150 GE in the area 
requirements for the implementation. For the proof-of-concept prototype it was important to 
demonstrate the different functionalities of the cryptoGPS variants.  
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Therefore an external adapter provided a serial-to-USB interface for easy communication with a 
PC. The microcontroller converts the bit serial data stream from the serial interface to the 8-bit 
parallel I/O of the ASIC, and vice versa. Fig. 14 depicts the layout of the prototype board and 
below in Fig. 13 is a photograph shown. 

 

 
             Fig. 13. Photograph of the prototype board 

 
The ATMEL ATmega32a has a single power supply of 3.3 volts and the ASIC uses two 

different power supplies; one for the core (2.5 V) and one for the pads (3.3 V). This allows us to 
consider the power consumption of the cryptographic core without any influence of the pads. This 
is important since the cryptographic core would be integrated into a full custom design and directly 
connected to a main component. The ASIC design is in fact limited by the pads which means that 
the core itself occupies more space than is strictly required. The size of the die is 1, 372 × 1, 179 
µm2 yet the core itself requires only 445 × 645 µm2 . After fabrication the die was put in a 
relatively large QFP-80 package, so as to be compatible with the test equipment at IHP. 
 

5.3 Results and Discussion 
For functional and post-synthesis simulation we used Mentor Graphics Modelsim SE PLUS 6.3a 
[29]  while Synopsys DesignCompiler version Z-2007.12-SP1 [30] was used to synthesize the 
designs to the IHP standard cell library SESAME-LP2-IHP0.25UM, which is compatible with the 
IHP 0.25 µm SGB25V process and has a typical voltage of 2.5 Volt [31]. 

Table 1 details the post-layout area requirements of every component of the three different 
architectures of cryptoGPS while Table 2 provides area figures for comparison reasons for two 
different design steps: post-synthesis (syn.) and post-layout (lay.). As we can see flexibility comes 
at a high price; while the fixed secret variants of cryptoGPS can hardwire s and select the 
appropriate chunk with MUXes, a variant that allows s to change requires 160 additional flip-flops 
and a more complex finite state machine. Together this constitutes a significant overhead of 1, 550 
GE (see Table 1). The area occupied by the different components of the cryptoGPS 
implementation are illustrated in Fig. 15. We can also see from Table 2 that, for a single challenge, 
the round-based variants cryptoGPS-64/8-F and cryptoGPS-64/8-V require 724 clock cycles 
while the serialized variant cryptoGPS-4/4-F requires 9, 319 clock cycles. 
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Fig. 14. Layout diagram of the cryptoGPS prototype board 

 
Table 1. Breakdown of the post-layout implementation results of three different architectures  

of cryptoGPS 

Component 
PRESENT Addwc Controller S_Storage Sum 

[GE] % [GE] % [GE] % [GE] % [GE] 
GPS-64/8-V 1751 39.5 67 1.5 1127 25.5 1483 33.5 4428 
GPS-64/8-F 1751 60.9 60 2.1 905 31.5 159 5.5 2876 
GPS-4/4-F 1200 50.0 35 1.5 905 37.7 263 11.9 2403 
 
This is as one would expect, and at a frequency of 100 KHz this translates to 7.24 ms and 93.19 ms, 
both of which are well below the typical target of 200 ms. Since we omitted the timing overhead 
introduced by the handshaking protocol, these figures offer a realistic view of the timing demands 
of an embedded cryptoGPS core. Given that the processing time for serialized present is nearly 13 
times longer than the round-based version it offers only a marginal benefit. Interestingly we 
observe that the post-synthesis area requirements are 3861, 2433, and 2143 GE depending on the 
variant. 

However filler cells, clock tree insertion and other layout overheads introduce a 12 to 18 % area 
increment and after manufacturing, these figures increase to 4428, 2876 and 2405 GE, respectively. 
Such an overhead is common and has been remarked on in other work [32]. Post-synthesis and 
post-layout current figures were simulated with Synopsys DesignCompiler version Z-2007.12-SP1 
and Synopsys PrimePower respectively. The results, ranging from 1.6 µA to 2.7 µA depending on 
the variant, indicate that cryptoGPS is well-suited for passive RFID tags. 
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Table 2. Post-synthesis and manufactured implementation results of three different architectures of 
cryptoGPS. We provide area figures for the two different design steps of post-synthesis (syn.) and 

post-layout (lay.). We also include figures for other low-cost asymmetric cryptographic 
implementations 

  
  

Security 
level 
[bits] 

Data 
path 
size 

Cycles 
per 

block 

Logic 
process 

Design 
step 

Area 
[GE] 

GPS-64/8-V 80 8 724 0.25 IHP  syn.  3,861 
 lay.  4,428 

GPS-64/8-F 80 8 724 0.25 IHP  syn.  2,433 
 lay.  2,876 

GPS-4/4-F 80 4 9,319 0.25 IHP  syn.  2,143 
 lay.  2,403 

WIPR[28] 80 8 66,048  0.35 AMS   syn.  5,705 
ECC-(267)2 [2] 67 1 418,250 0.25  syn.  12,944
ECC-112 [9] 56 1 195,264  0.35 AMI   syn.  10,113

NTRUencrypt [10] 57 1 29,225  0.13 TSMC   syn.  2,850 
 

   
(a) Addwc (67 GE)        (b) PRESENT-80/64 (1,751 GE) 

 

   
(c) S_Storage (1,484 GE)        (d) Controller (1,127 GE) 

Fig. 15. Area shares of single components within the GPS-64/8-V ASIC 
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6. Conclusions 
In the field of lightweight cryptography hidden overheads are crucial. So while much attention is 
often focused on the headline implementation of the cryptographic core, additional mechanisms 
required to make the solution functional can be overlooked. In this paper we have made two 
contributions. The first is to highlight and quantify the unseen overheads for cryptoGPS. We have 
undertaken the design of a full version of the scheme yet the total costs still remain surprisingly 
modest; a fully-functioning version of  cryptoGPS can be envisaged for 2000-3000 GE depending 
on the variant. The second contribution of the paper is to go through the full fabrication process 
and to produce a final functioning ASIC. This allows us to give increasingly accurate performance 
measurements, moving us one additional step closer to putting cryptography, indeed asymmetric 
cryptography, onto RFID tags. 
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