Performance Analysis of an Ammonia(R717) and Carbon Dioxide(R744) Two-Stage Cascade Refrigeration System

$NH_3-CO_2$를 사용하는 이원 냉동 시스템의 성능 분석

  • Son, Chang-Hyo (Dept. of Mechanical Engineering, Pukyong National University)
  • 손창효 (부경대학교 기계공학부)
  • Received : 2009.08.25
  • Accepted : 2010.01.25
  • Published : 2010.02.28

Abstract

In this paper, cycle performance analysis of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The main results were summarized as follows : The COP of two-stage cascade refrigeration system increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of two-stage cascade refrigeration system decreases with the increasing condensing temperature, but increases with the increasing evaporating temperature. And the COP of two-stage cascade refrigeration system increases with increasing the compressor efficiency. Therefore, superheating and subcoolng degree, compressor efficiency, and evaporating and condensing temperature of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system have an effect on the COP of this system.

본 논문은 암모니아-이산화탄소용 이원 냉동시스템의 작동변수에 대한 최적의 설계자료를 제공하고자 이원 냉동시스템의 사이클 성능을 분석하였다. 작동변수로는 암모니아용 고온사이클과 이산화탄소용 저온사이클내의 과냉각도와 과열도, 압축기효율, 응축과 증발온도이다. 이에 대한 주요결과를 요약하면 다음과 같다. 이원 냉동사이클의 과냉도가 증가할수록 COP는 증가하는 반면 과열도가 증가할수록 COP는 감소하는 것을 알 수 있다. 이원 냉동사이클의 응축온도가 증가할수록 이원 냉동사이클의 COP는 증가하는 반면 증발온도가 증가할수록 COP가 감소함을 알 수 있다. 또한, 이원 냉동사이클의 압축효율이 증가할수록 COP가 증가한다. 따라서, 과열도, 과냉각도, 압축효율, 증발온도, 응축온도 등의 인자들이 R717과 R744용 이원 냉동사이클의 COP에 영향을 미친다.

Keywords

References

  1. Sawalha, S., 2005. Using $CO_{2}$ in supermarket refrigeration. ASHRAE J. 47 (8), 26-30, 2005.
  2. Wilson, I. and Maier, D., Carbon dioxide for use as a refrigerant. In: Refrigeration Science and Technology, Proceedings, IIR-IRHACE Conference, Innovative Equipment and Systems for Comfort and Food Preservation. The University of Auckland, pp. 305-311, 2006.
  3. Park, S. N. and Kim, M. S., Performance of autocascade refrigeration system using carbon dioxide and R134a, Korea J. of Air-Conditioning and Refrigeration Eng., Vol. 11, No. 6, pp. 880-890, 1999.
  4. Chaichana, C., Aye, L., Charters, W. W. S., Natural working fluids for solar-boosted heat pumps. Int. J. Refrigeration 26, 637-643, 2003. https://doi.org/10.1016/S0140-7007(03)00046-X
  5. Lee, T. S., Liu, C. H. and Chen, T. W., Thermodynamic analysis of optimal condensing temperature of cascade condenser in $CO_{2}$/$NH_{3}$ cascade refrigeration systems. Int. J. Refrigeration 29, 1100-1108, 2006. https://doi.org/10.1016/j.ijrefrig.2006.03.003
  6. Bhattacharyya, S., Mukhopadhyay, S., Kumar, A. and Khurana, R. K., Sarkar, J., Optimization of a $CO_{2}$-$C_{3}H_{8}$ cascade system for refrigeration and heating. Int. J. Refrigeration 28, 1284-1292, 2005. https://doi.org/10.1016/j.ijrefrig.2005.08.010
  7. Bansal, P. K. and Jain, S., Cascade systems: past, present, and future. ASHRAE Trans. 113 (1), 245-252, 2007.
  8. EES: Engineering Equation Solver, fChart Software Inc., 2006.