DOI QR코드

DOI QR Code

THE EFFECT OF SEVERAL ROOT-END FILLING MATERIALS ON MG63 OSTEOBLAST-LIKE CELLS

수종의 치근단역충전 재료가 MG63 osteoblast-like cells에 미치는 영향

  • Lee, Jeong-Ho (Department of Conservative Dentistry, Dental Hospital, East-West Neomedical Center) ;
  • Shon, Won-Jun (Department of Conservative dentistry, School of Dentistry, Seoul National University) ;
  • Lee, Woo-Cheol (Department of Conservative dentistry, School of Dentistry, Seoul National University) ;
  • Baek, Seung-Ho (Department of Conservative dentistry, School of Dentistry, Seoul National University)
  • 이정호 (동서신의학병원 치과보존과) ;
  • 손원준 (서울대학교 치의학대학원 치과보존학교실) ;
  • 이원철 (서울대학교 치의학대학원 치과보존학교실) ;
  • 백성호 (서울대학교 치의학대학원 치과보존학교실)
  • Received : 2010.04.22
  • Accepted : 2010.05.01
  • Published : 2010.05.31

Abstract

The purpose of this study was to compare mineral trioxide aggregate (MTA; Dentsply, Tulsa Dental, Tulsa, OK, USA), which is widely used as root-end filling material, with DiaRoot BioAggregate (DB; Innovative BioCaramix Inc, Vancouver, BC, Canada), newly developed product, by using MG63 osteoblast-like cells. MTA, DB, and Intermediate Restorative Material (IRM; Dentsply Caulk, Milford, DE, USA) were used for root-end filling material while tissue culture plastic was used for control group. Each material was mixed and, the mixtures were left to set for 24 hours. MG63 cells were seeded to each group and then they were cultured for attachment for 4 hours. Following the attachment of cells to the root-end filling material, early cellular response was observed. After another 12 hours'culture, the level of attachment between cells and material was observed and in order to identify the effect of each material to bone formation, transforming growth factor beta1 ($TGF{\beta}1$) and osteocalin (OC) were estimated by using enzyme-linked immunosorbent assay (ELISA), and the amount of alkaline phosphatase (ALP) was also measured. The data were analyzed using one-way ANOVA. As a result, only at OC and the number of cells which were attached to materials, there was no statistical difference between MTA and DB. At other items, there was statistically significant difference in all groups. Although DB has not shown exactly the same cellular response like that of MTA, the number of attached cells shows that biocompatibility of the material and OC indicates bone formation rate. Therefore, if DB is used for root end filling material, it is expected to lead to similar results to MTA.

본 연구의 목적은 현재 치근단 역충전재로 널리 사용되고 있는 MTA와 새롭게 개발된 제품인 DB를 MG63 세포를 사용하여 비교하는 것이다. 치근단 역충전재료로는 MTA, DB, IRM을 사용하였고 대조군으로는 tissue culture plastic을 사용하였다. 각 재료를 혼합하고 혼합물의 경화가 일어나도록 24시간 동안 놓아두었다. MG63 세포를 각 군에 뿌려준 후 세포가 재료에 부착될 수 있도록 4시간 배양하였다. 치근단 역충전재를 세포에 접촉시킨 후 세포수준의 초기 반응을 관찰하였다. 12시간 더 배양한 후 세포가 각 재료에 붙어 있는 정도를 관찰하고, 각 재료가 골형성에 미치는 영향을 알아보기 위해 ELISA를 이용하여 $TGF{\beta}1$, OC를 측정하였고 ALP의 양도 측정하였다. 결과는 일원배치분산분석법으로 통계처리하였다. 그 결과, 재료에 부착이 일어난 세포의 수 항목과 OC 항목에서만 MTA와 DB간에 통계적으로 차이가 없었다. 다른 항목들에서는 모든 군 간에 통계적으로 유의한 차이가 있었다. DB가 MTA와 완전히 같은 세포반응을 보이지는 않았지만 부착이 일어난 세포의 수는 재료의 생체적합성을 나타내며 OC는 골형성 정도를 나타내므로 DB가 역충전 재료로 사용된다면 MTA와 유사한 결과를 보일 것으로 예측된다.

Keywords

References

  1. Torabinejad M, Chivian N. Clinical applications of mineral trioxide ag gregate. J Endod 25:197-205, 1999. https://doi.org/10.1016/S0099-2399(99)80142-3
  2. Yun YR, Yang IS, Hwang YC, Hwang IN, Choi HR, Yoon SJ, Kim SH, Oh WM. Pulp response of mineral trioxide aggregate, calcium sulfate or calcium hydroxide. J Kor Acad Cons Dent 32:95-101, 2007. https://doi.org/10.5395/JKACD.2007.32.2.095
  3. Schmitt D, Lee J, Bogen G. Multifaceted use of ProRoot MTA root canal repair material. Pediatr Dent 23:326-330, 2001.
  4. Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res 37:432-439, 1997. https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D
  5. Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod 24:543-547, 1998. https://doi.org/10.1016/S0099-2399(98)80074-5
  6. Mitchell PJC, Pitt Ford TR, Torabinejad M, McDonald F. Osteoblast biocompatibility of mineral trioxide aggregate. Biomater 20:167-173, 1999. https://doi.org/10.1016/S0142-9612(98)00157-4
  7. Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells(MG63) in response to titanium surfaces. Dent Mater 24:102-110, 2008. https://doi.org/10.1016/j.dental.2007.03.001
  8. Qu Z, Rausch-fan X, Wieland M, Matejka M, schedle A. The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res 82A:658-668, 2007. https://doi.org/10.1002/jbm.a.31023
  9. Perez AL, Spears R, Gutmann JL, Opperman LA. Osteoblasts and MG-63 osteosarcoma cells behave differently when in contact with ProRoot MTA and white MTA. Int Endod J 36:564-570, 2003. https://doi.org/10.1046/j.1365-2591.2003.00691.x
  10. Schmalz G. Use of cell cultures for toxicity testing of dental materials - advantages and limitations. J Dent 22(suppl 2):S6-11, 1994. https://doi.org/10.1016/0300-5712(94)90032-9
  11. Kang MK, Bae IH, Koh JT, Hwang YC, Hwang IN, Oh WM. Comparison of biocompatibility of four root perforation repair materials. J Kor Acad Cons Dent 34:192-198, 2009. https://doi.org/10.5395/JKACD.2009.34.3.192
  12. Calvo MS, Eyre DR, Gundberg CM. Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 17:333-368, 1996.
  13. Kassem M, Kveiborg M, Eriksen EF. Production and action of transforming growth factor-$\beta$in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol. Eur J Clin Invest 30:429-437, 2000. https://doi.org/10.1046/j.1365-2362.2000.00645.x
  14. Diadent group international. Material safety data sheet DiaRoot bioAggregate. 2007.
  15. De-Deus G, Canabarro A, Alves G, Linhares A, Senne MI, Granjeiro JM. Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endod 35:1387-1390, 2009. https://doi.org/10.1016/j.joen.2009.06.022
  16. Zhang H, Pappen FG, Haapasalo M. Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J Endod 35:221-224, 2009. https://doi.org/10.1016/j.joen.2008.11.001
  17. Apaydin ES, Shabahang S, Torabinejad M. Hard-tissue healing after application of fresh or set MTA as rootend- filling material. J Endod 30:21-24, 2003. https://doi.org/10.1097/00004770-200401000-00004
  18. AL-Rabeah E, Perinpanayagam H, MacFarland D. Human alveolar bone cells interact with ProRoot and tooth-colored MTA. J Endod 32:872-875, 2006. https://doi.org/10.1016/j.joen.2006.03.019
  19. Zhu Q, Haglund R, Safavi KE, Spangberg LSW. Adhesion of human osteoblasts on root-end filling materials. J Endod 26:404-406, 2000. https://doi.org/10.1097/00004770-200007000-00006
  20. Bender MedSystems GmbH. BMS2020INST human osteocalcin. 2006.
  21. Thompson TS, Berry JE, Somerman MJ, Kirkwood KL. Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate. J Endod 29:407-412, 2003. https://doi.org/10.1097/00004770-200306000-00007
  22. Cassidy N, Fahey M, Prime SS, Smith AJ. Comparative analysis of transforming growth factor-$\beta$ isoforms 1-3 in human and rabbit dentine matrices. Archs oral Biol 42:219-223, 1997. https://doi.org/10.1016/S0003-9969(96)00115-X
  23. Sakai R, Eto Y. Involvement of activin in the regulation of bone metabolism. Mol Cell Endocrinol 180:183-188, 2001. https://doi.org/10.1016/S0303-7207(01)00496-8
  24. Kwon JY, Lim SS, Baek SH, Bae KS, Kang MH, Lee WC. The effect of mineral trioxide aggregate on the production of growth factors and cytokine by human periodontal ligament fibroblasts. J Kor Acad Cons Dent 32:191-197, 2007. https://doi.org/10.5395/JKACD.2007.32.3.191

Cited by

  1. Biocompatibility of root-end filling materials: recent update vol.38, pp.3, 2013, https://doi.org/10.5395/rde.2013.38.3.119
  2. Comparative analysis of physicochemical properties of root perforation sealer materials vol.39, pp.3, 2014, https://doi.org/10.5395/rde.2014.39.3.201