DOI QR코드

DOI QR Code

A NEW METHOD TO MEASURE THE LINEAR POLYMERIZATION SHRINKAGE OF COMPOSITES USING A PARTICLE TRACKING METHOD WITH COMPUTER VISION

컴퓨터 시각과 입자 추적 방법을 이용한 복합레진의 선형중합수축 측정의 새로운 방법

  • Lee, In-Bog (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Min, Sun-Hong (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Seo, Deog-Gyu (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Kim, Sun-Young (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Kwon, Young-Chul (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
  • 이인복 (서울대학교 치의학대학원 치과보존학교실) ;
  • 민선홍 (서울대학교 치의학대학원 치과보존학교실) ;
  • 서덕규 (서울대학교 치의학대학원 치과보존학교실) ;
  • 김선영 (서울대학교 치의학대학원 치과보존학교실) ;
  • 권영철 (서울대학교 치의학대학원 치과보존학교실)
  • Received : 2010.04.22
  • Accepted : 2010.04.26
  • Published : 2010.05.31

Abstract

Since the introduction of restorative dental composites, their physical properties have been significantly improved. However, polymerization shrinkage is still a major drawback. Many efforts have been made to develop a low shrinking composite, and silorane-based composites have recently been introduced into the market. In addition, many different methods have been developed to measure the polymerization shrinkage. In this study, we developed a new method to measure the linear polymerization shrinkage of composites without direct contact to a specimen using a particle tracking method with computer vision. The shrinkage kinetics of a commercial silorane-based composite (P90) and two conventional methacrylate-based composites (Z250 and Z350) were investigated and compared. The results were as follows: 1. The linear shrinkage of composites was 0.33-1.41%. Shrinkage was lowest for the silorane-based (P90) composite, and highest for the flowable Z350 composite. 2. The new instrument was able to measure the true linear shrinkage of composites in real time without sensitivity to the specimen preparation and geometry.

수복용 복합레진이 도입된 이후 많은 물성의 향상이 이루어졌으나 중합수축은 아직 해결되지 않은 주요 단점으로 남아있다. 중합수축이 적은 복합레진을 만들기 위한 많은 노력이 이루어져 최근에 silorane 기질의 저수축 복합레진이 개발되었고, 정밀하게 중합수축을 측정하기 위한 여러 방법들이 시도되었다. 본 연구에서는 컴퓨터 시각(computer vision)을 이용하여 시편에 직접 접촉하지 않으며 광중합 복합레진의 선형중합수축을 측정할 수 있는 입자 추적 시스템을 개발하였고 이를 이용하여 silorane (P90) 및 methacrylate (Z250과 Z350) 기질의 광중합 복합레진의 중합수축 거동을 측정하여 다음과 같은 결론을 얻었다. 1. 복합레진의 선형중합수축은 0.33-1.41% 였으며 silorane기질의 복합레진인 P90이 가장 낮았고 Z250, Z350의 순으로 증가하였다. 2. 본 장비는 선형중합수축을 시편의 형태에 민감하지 않고 복잡한 과정없이 실시간으로 측정할 수 있었다.

Keywords

References

  1. B.A.M. Venhoven, A.J. de Gee and C.L. Davidson : Polymerization contraction and conversion of light-curing BisGMA-based methacryate resins. Biomaterials 14:871-875, 1993.
  2. Ferracane JL, Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater 21:36-42, 2005. https://doi.org/10.1016/j.dental.2004.10.004
  3. Ferracane JL. Buonocore Lecture. Placing dental composites- a stressful experience. Oper Dent 33:247-57, 2008. https://doi.org/10.2341/07-BL2
  4. J.H. Lai and A.E. Johnson : Measuring polymerization shrinkage of photo activated restorative materials by a water filled dilatometer. Dent Mater 9:139-143, 1993. https://doi.org/10.1016/0109-5641(93)90091-4
  5. R.W. Penn : A recording dilatometer for measuring polymerization shrinkage. Dent Mater 2:78-79, 1986. https://doi.org/10.1016/S0109-5641(86)80056-2
  6. A.J.de Gee, A.J. Feilzer and C.L. Davidson : True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater 9:11-14, 1993. https://doi.org/10.1016/0109-5641(93)90097-A
  7. R.L. Sakaguchi, C.T. Sasik, M.A. Bunczak and W.H. Douglas : Strain gauge method for measuring polymerization contraction of composite restoratives. J Dent 19:312-316, 1991. https://doi.org/10.1016/0300-5712(91)90081-9
  8. V. Fano, I. Ortalli, S.Pizzi and M. Bonanini: Polymerization shrinkage of microfilled composites determined by laser beam scanning. Biomaterials 18:467-470, 1997. https://doi.org/10.1016/S0142-9612(96)00171-8
  9. R. Labella, P. Lambrechts, B. van Meerbeek and G. Vanherle: Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater 15:128-137, 1999. https://doi.org/10.1016/S0109-5641(99)00022-6
  10. Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible light-cured materials: methods development. Dent Mater 7:281-287, 1991. https://doi.org/10.1016/S0109-5641(05)80030-2
  11. Lee MR, Cho BH, Son HH, Um CM, Lee IB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater 23:288-295, 2007. https://doi.org/10.1016/j.dental.2006.01.025
  12. Park JK, JH Chang, Lee IB. How should composite be layered to reduce shrinkage stress: Incremental or bulk filling? Dent Mater 24:1501-1505, 2008. https://doi.org/10.1016/j.dental.2008.03.013
  13. Feilzer AJ, de Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res 66:1636-1639, 1987. https://doi.org/10.1177/00220345870660110601
  14. Lee IB, Cho BH, Son HH, Um CM, Lim BS. The effect of consistency, specimen geometry and adhesion on the axial polymerization shrinkage measurement of light cured composites. Dent Mater 22:1071-9, 2006. https://doi.org/10.1016/j.dental.2005.08.012
  15. Lee SH, Chang J, Ferracane J, Lee IB. Influence of instrument compliance and specimen thickness on the polymerization shrinkage stress measurement of lightcured composites. Dent Mater 23:1093-100, 2007. https://doi.org/10.1016/j.dental.2006.10.003
  16. Lee IB, Cho BH, Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J of Oral Rehabil 32:304-314, 2005. https://doi.org/10.1111/j.1365-2842.2004.01414.x
  17. In-Bog Lee. A new method - real time measurement of the initial dynamic volumetric shrinkage of composite resins during polymerization. J of Kor Acad of Cons Dent 26:134-140, 2001.
  18. Ellakwa A, Cho NK, Lee IB. The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dent Mater 23:1229-1235, 2007. https://doi.org/10.1016/j.dental.2006.11.004
  19. Weinmann W, Thalacker C, Guggenberg R. Siloranes in dental composites. Dent Mater 21:68-74, 2005. https://doi.org/10.1016/j.dental.2004.10.007
  20. Papadogiannis D, Kakaboura A, Palaghias G, Eliades G. Setting characteristics and cavity adaptation of lowshrinking resin composites. Dent Mater 25; 1509-1516, 2009. https://doi.org/10.1016/j.dental.2009.06.022
  21. Calheiros FC, Sadek FT, Braga RR, Cardoso PE. Polymerization contraction stress of low-shrinkage composites and its correlation with microleakage in class V restorations. J Dent 32:407-12. 2004. https://doi.org/10.1016/j.jdent.2004.01.014
  22. Kleverlaan CJ, Feilzer AJ. Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater 21:1150-7, 2005. https://doi.org/10.1016/j.dental.2005.02.004
  23. Deog-Gyu Seo, Sun-Hong Min, In-Bog Lee. Effect of instrument compliance on the polymerization shrinkage stress measurements of dental resin composites. J of Kor Acad of Cons Dent 34:146-52, 2009.
  24. Youngchul Kwon, In-Bog Lee. Polymerization shrinkage kinetics of silorane-based composites. J of Kor Acad of Cons Dent 35:51-58, 2010. https://doi.org/10.5395/JKACD.2010.35.1.051