DOI QR코드

DOI QR Code

Leader-Following Based Adaptive Formation Control for Multiple Mobile Robots

다개체 이동 로봇을 위한 선도-추종 접근법 기반 적응 군집 제어

  • 박봉석 (연세대학교 전기전자공학과) ;
  • 박진배 (연세대학교 전기전자공학과)
  • Received : 2009.10.20
  • Accepted : 2010.02.12
  • Published : 2010.05.01

Abstract

In this paper, an adaptive formation control based on the leader-following approach is proposed for multiple mobile robots with time varying parameters. The proposed controller does not require the velocity information of the leader robot, which is commonly assumed that it is either measured or telecommunicated. In order to estimate time varying velocities of the leader robot, the smooth projection algorithm is employed. From the Lyapunov stability theory, it is proved that the proposed control scheme can guarantee the uniform ultimate boundedness of error signals of the closed-loop system. Finally, the computer simulations are performed to demonstrate the performance of the proposed control system.

Keywords

References

  1. T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot team,” IEEE Trans. Robot and Automation, vol. 14, no. 6, pp. 926-939, 1998. https://doi.org/10.1109/70.736776
  2. J. Fredslund and M. J. Mataric, “A general algorithm for robot formations using local sensing and minimal communication,” IEEE Trans. Robot. Automat., vol. 18, no. 5, pp. 837-846, 2002. https://doi.org/10.1109/TRA.2002.803458
  3. J. R. T. Lawton, R. W. Beard, and B. J. Young, “A decentralized approach to formation maneuvers,” IEEE Trans. Robot. Automat., vol. 19, no. 6, pp. 933-941, 2003. https://doi.org/10.1109/TRA.2003.819598
  4. K. D. Do and J. Pan, “Nonlinear formation control of unicycletype mobile robots,” Robot. Auton. Syst., vol. 55, pp. 191-204, 2007. https://doi.org/10.1016/j.robot.2006.09.001
  5. P. Ogren, M. Egerstedt, and X. Hu, “A control Lyapunov function approach to multi-agent coordination,” Proc. of IEEE Conf. Decision and Control, Orlando, FL, pp. 1150-1155, Dec. 2001.
  6. M. A. Lewis and K. H. Tan, “High precision formation control of mobile robots using virtual structures,” Auton. Robots, vol. 4, no. 4, pp. 387-403, 1997. https://doi.org/10.1023/A:1008814708459
  7. J. P. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of formations of nonholonomic mobile robots,” IEEE Trans. Robot. Automa., vol. 17, no. 6, pp. 905-908, 2001. https://doi.org/10.1109/70.976023
  8. J. Shao, G. Xiao, and Z. Cai, “Leader-following formation control of multiple mobile vehicles,” IET Control Theory Appl., vol. 1, no. 2, pp. 545-552, 2007. https://doi.org/10.1049/iet-cta:20050371
  9. A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor, “A vision-based formation control framework,” IEEE Trans. Robotics and Automat., vol. 18, no. 5, pp. 813-825, 2002. https://doi.org/10.1109/TRA.2002.803463
  10. T. Dierks and S. Jagannathan, “Neural network control of mobile robot formations using RISE feedback,” IEEE Trans. Systems, Man, and Cybern., vol. 39, no. 2, pp. 332-347, 2009. https://doi.org/10.1109/TSMCB.2008.2005122
  11. J. B. Pomet and L. Praly, “Adaptive nonlinear regulation: estimation from the Lyapunov equation,” IEEE Trans. Automatic Control, vol. 37, no. 6, pp. 729-740, 1992. https://doi.org/10.1109/9.256328
  12. M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear systems,” IEEE Trans. Automatic Control, vol. 41, no. 3, pp. 447-451, 1996. https://doi.org/10.1109/9.486648
  13. 박봉석, 최윤호, 박진배, “시변 매개변수를 갖는 다개체 이동 로봇을 위한 적응 군집 제어,” 한국자동제어학술회의 논문집(KACC2009), 부산, 한국, pp. 136-138, 2009.