DOI QR코드

DOI QR Code

공정능력지수 Cpmk를 평가함에서의 바람직한 가설검정

Test of Hypothesis in Assessing Process Capability Index Cpmk

  • 조중재 (충북대학교 정보통계학과) ;
  • 유혜경 (충북대학교 정보통계학과) ;
  • 한정수 (충북대학교 정보통계학과)
  • Cho, Joong-Jae (Department of Information & Statistics, Chungbuk National University) ;
  • Yu, Hye-Kyung (Department of Information & Statistics, Chungbuk National University) ;
  • Hana, Jung-Su (Department of Information & Statistics, Chungbuk National University)
  • 투고 : 20100300
  • 심사 : 20100400
  • 발행 : 2010.05.31

초록

일반적으로 고객들은 어떤 상품에 대한 품질수준이 높을수록 보다 높은 만족을 얻는 것으로 알려져 있다. 보통품질수준은 공정능력지수에 의해 측정된다. 공정능력이란 공정이 관리상태에 있을 때, 그 공정에서 생산, 제공되는 상품의 변동이 어느 정도인가를 나타내는 중요한 개념이다. 3세대 공정능력지수 $C_{pmk}$는 흔히 현장에서 사용되고 있는 지수$C_p$$C_{pk}$보다 공정능력을 평가함에 보다 설명력이 있고 합리적인지수라고 할 수 있다. 공정능력에 대한 효율성 평가는 대부분 점추정과 구간추정을 통하여 행하여지고 있는 바, 가설검정을 통한 의사결정 또한 중요한 문제라고 할 수 있다. 본 논문에서는 공정능력여부를 결정하기위하여 공정능력지수 $C_{pmk}$에 대한 보다 유용한 가설검정방법에 대하여 연구하였다. 제안된 붓스트랩 가설검정방법은 공정분포가 정규분포에 따르던 그렇지 않던지 간에 매우 유용하며 보다 수월하게 활용할 수 있음을 밝혔다. 그리고 수치적인 모의실험을 통해 공정의 정규성 여부와 상관없이 제안된 가설검정방법의 타당성을 밝히고자 하였다.

Higher quality level is generally perceived by customers as improved performance by assigning a correspondingly higher satisfaction score. Usually, the quality level is measured by process capability indices. The index is used to determine whether a production process is capable of producing items within a specified tolerance. The third generation index $C_{pmk}$ is more powerful than two useful indices $C_p$ and $C_{pk}$. which have been widely used in six sigma industries to assess process performance. Most evaluations on process capability indices focus on point estimates, which may result in unreliable assessments of process performance. In this paper, we consider better testing procedure on assessing process capability index $C_{pmk}$ for practitioners to use in determining whether a given process is capable. It is easy to use the proposed method for assessing process capability index $C_{pmk}$. Whether a process is clearly normal or nonnormal, our bootstrap testing procedure could be applied effectively without the complexity of calculation. A numerical result based on our proposed method is illustrated.

키워드

참고문헌

  1. Chen, S. M. and Hsu, N. F. (1995). The asymptotic distribution of the process capability index Cpmk, Communications in Statistics: Theory and Methods, 24, 1279-1291. https://doi.org/10.1080/03610929508831553
  2. Cho, J. J., Park, B. S. and Kim, J. S. (1999). Better nonparametric bootstrap confidence intervals for capability index Cpk, The Korean Journal of Applied Statistics, 12, 45-65.
  3. Cho, J. J., Park, B. S. and Park, H. I. (2004). Better confidence limits for process capability index Cpmk under the assumption of normal process, Journal of the Korean Society for Quality Management, 32, 229-241.
  4. Cho, J. J., Sim, K. Y. and Park, B. S. (2008). Statistical inference for process capability indices and 6 Sigma quality levels, Communications of the Korean Statistical Society, 15, 451-464. https://doi.org/10.5351/CKSS.2008.15.3.451
  5. Cho, J. J. and Lim, S. D. (2006) Better statistical test for process capability index $C_p$, Journal of the Korean Society for Quality Management, 34, 66-72.
  6. Diciccio, T. J. and Tibshirani, R. (1987). Bootstrap confidence intervals and bootstrap approximations, Journal of the American Statistical Association, 82, 163-170. https://doi.org/10.2307/2289143
  7. Efron, B. (1979). Bootstrap methods: Another look at the jackknife, Annals of Statistics, 9, 139-172.
  8. Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman & Hall, Inc.
  9. Franklin, L. A. and Wasserman, G. S. (1992). Bootstrap lower confidence interval limits for capability indices, Journal of Quality Technology, 24, 196-210. https://doi.org/10.1080/00224065.1992.11979401
  10. Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals, Annals of Statistics, 16, 927-953. https://doi.org/10.1214/aos/1176350933
  11. Lin, H. C. (2005). Using normal approximation for calculating the p-value in assessing process capability index $C_{pk}$, International Journal of Advanced Manufacturing Technology, 25, 160-166. https://doi.org/10.1007/s00170-003-1821-9
  12. Lin, P. C. and Pearn, W. L. (2002). Testing process capability for one-sided specification limit with Application to the voltage level translator, Microelectronics Reliability, 42, 1975-1983. https://doi.org/10.1016/S0026-2714(02)00103-8
  13. Pearn, W. L., Kotz, S. and Johnson, N. L. (1992). Distributional and inferential properties of process capabiblity indices, Journal of Quality Technology, 24, 216-231. https://doi.org/10.1080/00224065.1992.11979403
  14. Pearn, W. L., Yang, S. L., Chen, K. S. and Lin, P. C. (2001). Testing process capability $C_{pmk}$ with an application, International Journal of Reliability Quality and Safety Engineering, 8, 15-34. https://doi.org/10.1142/S0218539301000360
  15. Wright, P. A. (1998). The probability density function of Process Capability Index $C_{pmk}$, Communication in Statistics : Theory and Methods, 27, 1781-1789. https://doi.org/10.1080/03610929808832189