Abstract
The rapid growth in communication technology has led to the development of effective ways of sharing ideas and information in the form of speech and images. Understanding this information has become an important research issue and drawn the attention of many researchers. Text in a digital image contains much important information regarding the scene. Detecting and extracting this text is a difficult task and has many challenging issues. The main challenges in extracting text from natural scene images are the variation in the font size, alignment of text, font colors, illumination changes, and reflections in the images. In this paper, we propose a connected component based method to automatically detect the text region in natural images. Since text regions in mages contain mostly repetitions of vertical strokes, we try to find a pattern of closely packed vertical edges. Once the group of edges is found, the neighboring vertical edges are connected to each other. Connected regions whose geometric features lie outside of the valid specifications are considered as outliers and eliminated. The proposed method is more effective than the existing methods for slanted or curved characters. The experimental results are given for the validation of our approach.