DOI QR코드

DOI QR Code

Equivalence in Alpha-Level Linear Regression

  • Received : 20100300
  • Accepted : 20100500
  • Published : 2010.07.31

Abstract

Several methods were suggested for constructing a fuzzy relationship between fuzzy independent and dependent variables. This paper reviews the use of the method by minimizing the square of the difference between an observed and a predicted fuzzy number in an ${\alpha}$-level linear regression model. We introduce a new distance between fuzzy numbers on the basis of a mode, a core point and a radius of an ${\alpha}$-level set of a fuzzy number an construct the fuzzy regression model using the proposed fuzzy distance. We also investigate sufficient condition for an equivalence in the ${\alpha}$-level regression model.

Keywords

References

  1. Bargiela, A., Pedrycz, W. and Nakashima, T. (2007). Multiple regression with fuzzy data, Fuzzy Sets and Systems, 158, 2169-2188. https://doi.org/10.1016/j.fss.2007.04.011
  2. Chang, P.-T. and Lee, E. S. (1994). Fuzzy least absolute deviations regression and the conflicting trends in fuzzy parameters, Computers & Mathematics with Applications, 28, 89-101.
  3. Chang, Y. (2001). Hybrid fuzzy least-squares regression analysis and its reliability measures, Fuzzy Sets and Systems, 119, 225-246. https://doi.org/10.1016/S0165-0114(99)00092-5
  4. Chen, Y.-S. (1999). Fuzzy ranking and quadratic fuzzy regression, Computers & Mathematics with Applications, 38, 265-279. https://doi.org/10.1016/S0898-1221(99)00305-3
  5. Coppi, R., D’Urso, P., Giordani, P. and Santoro, A. (2006). Least squares estimation of a linear regression model with LR fuzzy response, Computers & Mathematics with Applications, 51, 267-286.
  6. Diamond, P. (1988). Fuzzy Least Squares, Information Sciences: An International Journal, 46, 141-157.
  7. Diamond, P. and Korner, R. (1997). Extended fuzzy linear models and least squares estimates, Computers & Mathematics with Applications, 33, 15-32.
  8. D’Urso, P. (2003). Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data, Computers & Mathematics with Applications, 42, 47-72. https://doi.org/10.1016/S0898-1221(01)00129-8
  9. Hojati, M., Bector, C. R. and Smimou, K. (2005). A simple method for computation of fuzzy linear regression, European Journal of Operational Research, 166, 172-184. https://doi.org/10.1016/j.ejor.2004.01.039
  10. Hong, D. H. and Hwang, C. (2004). Extended fuzzy regression models using regularization method, Information Sciences: An International Journal, 164, 31-46. https://doi.org/10.1016/j.ins.2003.09.014
  11. Kao, C. and Chyu, C. (2002). A fuzzy linear regression model with better explanatory power, Fuzzy Sets and Systems, 126, 401-409. https://doi.org/10.1016/S0165-0114(01)00069-0
  12. Kao, C. and Chyu, C. (2003). Least-squares estimates in fuzzy regression analysis, European Journal of Operational Research, 148, 426-435. https://doi.org/10.1016/S0377-2217(02)00423-X
  13. Kao, C. and Lin, P. (2005). Entropy for fuzzy regression analysis, International Journal of Systems Science, 36, 869-876. https://doi.org/10.1080/00207720500382290
  14. Kim, B. and Bishu, R. R. (1998). Evaluation of fuzzy linear regression models by comparing membership functions, Fuzzy Sets and Systems, 100, 343-352. https://doi.org/10.1016/S0165-0114(97)00100-0
  15. Kim, H. K., Yoon, J. H. and Li, Y. (2008). Asymptotic properties of least squares estimation with fuzzy observations, Information Sciences: An International Journal, 178, 439-451. https://doi.org/10.1016/j.ins.2007.07.010
  16. Korner, R. and Nather, W. (1998). Linear regression with random fuzzy variables: Extended classical estimates, best liner estimates, least squares estimate, Journal of Information Science, 109, 95-118.
  17. Ming, M., Friedman, M. and Kandel, A. (1997). General fuzzy least squares, Fuzzy Sets and Systems, 88, 107-118. https://doi.org/10.1016/S0165-0114(96)00051-6
  18. Nasibov, E. N. (2007). Fuzzy least squares regression model based of weighted distance between fuzzy numbers, Automatic Control and computer sciences, 41, 15-26.
  19. Nasrabadi, N. N. and Nasrabadi, E. (2004). A mathematical-programming approach to fuzzy linear regression analysis, Applied Mathematics and Computation, 155, 873-881. https://doi.org/10.1016/j.amc.2003.07.031
  20. Nather, W. (2006). Regression with fuzzy random data, Computational Statistics & Data Analysis, 51, 235-252. https://doi.org/10.1016/j.csda.2006.02.021
  21. Sakawa, M. and Yano, H. (1992). Multiobjective fuzzy linear regression analysis for fuzzy inputoutput data, Fuzzy Sets and Systems, 47, 173-181. https://doi.org/10.1016/0165-0114(92)90175-4
  22. Tanaka, H., Uejima, S. and Asai, K. (1982). Linear regression analysis with fuzzy model, IIEEE Transactions On Systems, Man, And Cybernet, 12, 903-907. https://doi.org/10.1109/TSMC.1982.4308925
  23. Wu, H.-C. (2003). Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data, Computational Statistics & Data Analysis, 42, 203-217. https://doi.org/10.1016/S0167-9473(02)00116-0
  24. Wu, H.-C. (2008). Fuzzy linear regression model based on fuzzy scalar product, Soft Computing, 12, 469-477. https://doi.org/10.1007/s00500-007-0220-9
  25. Wunsche, A. and Nather, W. (2002). Least-squares fuzzy regression with fuzzy random variables, Fuzzy Sets and Systems, 130 , 43-50. https://doi.org/10.1016/S0165-0114(02)00103-3
  26. Xu, R. and Li, C. (2001). Multidimensional least-squares fitting with a fuzzy model, Fuzzy Sets and Systems, 119, 215-223. https://doi.org/10.1016/S0165-0114(98)00350-9
  27. Zadeh, L. A. (1975). The concept of linguistic variable and its application to approximate reasoning I, Information Sciences: An International Journal, 8, 199-249. https://doi.org/10.1016/0020-0255(75)90036-5