제주도 상시미동의 H/V 스펙트럼비 분석

H/V Spectral-ratio Analysis of Microtremors in Jeju Island

  • 홍명호 (강원대학교 자연과학대학 지구물리학과) ;
  • 김기영 (강원대학교 자연과학대학 지구물리학과)
  • Hong, Myung-Ho (Department of Geophysics, Kangwon National University) ;
  • Kim, Ki-Young (Department of Geophysics, Kangwon National University)
  • 투고 : 2010.01.17
  • 심사 : 2010.02.01
  • 발행 : 2010.05.28

초록

제주도 화산암 두께변화를 연구하기 위하여, 단주기와 광대역 지진계를 각각 8개와 4개 조사지 지표에 설치하여 상시미동 자료를 30 ~ 60분 동안 100 Hz 샘플률로 기록하였다. 인공잡음은 주간자료의 1.8 Hz 이상에서 나타나는 반면, 자연잡음은 0.4 ~ 0.8 Hz 범위에서 주간 및 야간 기록자료 모두에 기록되어 나타난다. H/V 스펙트럼비를 이용하여 구한 우세주파수는 0.2 ~ 0.7 Hz 범위에 분포한다. 우세주파수는 한라산 중심부로 갈수록 점진적으로 작은 값을 보여, 기존의 중력 및 자력모델의 결과처럼 제주도의 기반암이 섬 중심부 아래로 휜 구조임을 반영한다. 기반암 상부 현무암의 평균 횡파속도를 1,800 m/s로 가정할 경우, 각 조사지의 기반암 깊이는 약 640 ~ 2,140 m 정도로 평가된다.

To study the thickness variation of volcanic rocks of Jeju Island, microtremor data were recorded at eight and four sites using short-period and broadband seismometers, respectively, for 30 ~ 60 minutes with a 100 Hz sampling rate. During the daytime, these records show increased cultural noise at frequencies above 1.8 Hz. Natural noise occurs in the frequency range of 0.4 to 0.8 Hz in both daytime and nighttime data. Predominant frequencies determined by the H/V spectral-ratio method are in the range of 0.2 ~ 0.7 Hz. These frequencies decrease gradually as the central part of the Mt. Halla is approached. This may indicate that the basement is warped downward beneath the center of the island, which is consistent with previous gravimetric and magnetic models. Assuming an average shear-wave velocity of 1,800 m/s for the overburden basalts, the depths to basement are estimated to be between 640 and 2,140 m.

키워드

참고문헌

  1. 강소라, 정규귀, 윤선, 2002, 제주도 시추코아에서 산출된 저서성 유공충 화석군집, 한국고생물학회지, 18, 1-10.
  2. 김기영, 홍명호, 2009, SPAC 분석방법에 의한 제주도 화산암층 횡파속도 연구, 2009 한국지구물리.물리탐사학회 학술대회, 174-175.
  3. 김성균, 1991, 상시미동과 지하구조, 대한지질공학회지, 1, 109-120.
  4. 김성균, 황민우, 2002, 상시미동에 의한 지하구조와 지반응답의 추정, 한국지구과학회지, 23, 380-392.
  5. 김준경, 2006, 국내 지진관측소 부지의 지반증폭특성 연구, 한국암반공학회지, 16, 486-494.
  6. 김준경, 2009, 발파에 의한 지반진동의 응답스펙트럼 분석, 한국암반공학회지, 15, 338-343.
  7. 오진용, 이성숙, 윤선, 고기원, 윤혜수, 이종덕, 2000, 제주도 지하층서, 대한지질학회지, 36, 181-194.
  8. 이기화, 정봉일, 최광선, 이승국, 1983, 제주도의 중력 및 지자기에 관한 연구, 한국지구과학지, 19, 1-10.
  9. 이동호, 1998, 제주도 시추코아와 서귀포층 노두의 자기층서, 부산대학교 이학석사학위논문, 91p.
  10. 이의형, 1990, 제주도의 해성 퇴적층으로부터 채출된 신생대 후기 개형충 화석에 대한 연구, 고려대학교 이학박사학위논문, 374p.
  11. 최지향, 김희준, 남명진, 이태종, 한누리, 이성곤, 송윤호, 서정희, 2007, 2차원 MT 자료의 3차원 역산을 통한 제주도 지전기구조 연구, 10, 268-274.
  12. Agnew, D. C., and Berger, J., 1978, Vertical seismic noise at very low frequencies, J. Geophys. Res., 83, 5420-5424. https://doi.org/10.1029/JB083iB11p05420
  13. Borcherdt, R. D., 1970, Effects of local geology on ground motion near San Francisco Bay, Bull. Seism. Soc. Am, 60, 29-61.
  14. Castro, R. R., Mucciarelli, M., Pacor, F., and Petrungaro, C., 1997, S-wave site-response estimates using horizontal-tovertical spectral ratios, Bull. Seism. Soc. Am., 87, 256-260.
  15. Chael, E. P., 1987, Spectral scaling of earthquake in the Miramichi region of New Brunswick, Bull. Seism. Soc. Am., 77, 347-365.
  16. Crombie, D., Hasselmann, K., and Sell, W., 1963, Highfrequency radar observations of sea waves travelling in opposition to the wind, Boundary-Layer Meteorol., 13, 45-54.
  17. Field, E. and Jacob, K., 1993, The theoretical response of sedimentary layers to ambient seismic noise, Geophys. Res. Lett., 20, 2925-2928. https://doi.org/10.1029/93GL03054
  18. Gueguen, P., Chatelain, J. L., Guillier, B., Yepes, H., 2000, An indication of the soil topmost layer response in Quito (Ecuador) using noise H/V spectral ratio, Soil Dynamics and Earthquake Engineering, 19, 127-133. https://doi.org/10.1016/S0267-7261(99)00035-4
  19. Kagami, H., Okada, S., Shiono, K., Oner, M., Dravinski, M., and Mal, A. K., 1986, Observation of 1 to 5 second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of site effects in the San Fernando Valley, Bull. Seism. Soc. Am., 76, 1801-1812.
  20. Konno, K. and Ohmachi, T., 1998, Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seism. Soc. Am., 88, 228-241.
  21. Kwon, B. D., Lee, H. S., Jung, G. G., and Chung, S. W., 1995, Investigation of subsurface structure of Cheju Island by gravity and magnetic methods, Economic and Environmental Geology, 28(4), 395-404.
  22. Lee, M. W., 1982, Petrology and geochemistry of Jeju volcanic island, Korea, The science reports of the Tohoku University Series III, 15(2), 177-256.
  23. Lermo, J. and Chavez-Garcia, F. J., 1994, Are microtremors useful in site response evaluation?, Bull. Seism. Soc. Am., 84, 1350-1364.
  24. Margheriti, L., Wennerberg, L., and Boatwright, J., 1994, A comparison of coda and S-wave spectral ratio estimates of site response in the southern San Francisco Bay area, Bull. Seism. Soc. Am., 84, 1815-1830.
  25. Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Quarterly Report of Railway Technical Research Institute, 30, 25-33.
  26. Nanometrics, 2009, Trillium Compact seismometer user guide, Kanata, Canada, 64p.
  27. Ohmachi, T., Nakamura, Y., and Toshinawa, T., 1991, Ground motion characteristics in the San Francisco Bay area detected by microtremor measurements, Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earth Engineering and Soil Dynamics, Expanded Abstract, 1643-1648.
  28. Okamoto, S., 1973, Introduction to Earthquake Engineering, University of Tokyo Press, Tokyo, 571p.
  29. Phillips, W. S. and Aki, K., 1986, Site amplification of coda waves from local earthquakes in central source spectrum, Bull. Seism. Soc. Am., 68, 923-948.
  30. Sokolov, V. Y., Loh, C. H., and Jean, W. Y., 2007, Application of horizontal-to-vertical (H/V) Fourier spectral ratio for analysis of site effect on rock (NEHRP-class B) sites in Taiwan, Soil Dynamics and Earthquake Engineering, 27, 314-323. https://doi.org/10.1016/j.soildyn.2006.09.001
  31. Teves-Costa, P., Matias, L., Oliveira, C. S., and Mendez-Victor, L. A., 1996, Shallow crustal models in the Lisbon area from explosion data using body and surface wave analysis, Tectonophysics, 258, 171-193. https://doi.org/10.1016/0040-1951(95)00194-8
  32. Theodulidis, N. P. and Bard, P. Y., 1995, Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan (SMART-1), Soil Dyn. and Earthq. Engin., 14, 177-197. https://doi.org/10.1016/0267-7261(94)00039-J
  33. Tokimatsu, K., Tamura, S., and Kojima, H., 1992, Effects of multiple modes on Rayleigh wave dispersion, J. Geotech. Engrg., ASCE, 118, 1529-1543. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:10(1529)
  34. Walling, M. Y., Mohanty, W. K., Nath, S. K., Mitra, S., and Ajesh, J., 2009, Microtremor survey in Talchir, India to ascertain its basin characteristics in terms of predominant frequency by Nakamura's ratio technique, Engineering Geology, 106, 123-132. https://doi.org/10.1016/j.enggeo.2009.03.013
  35. Yi, S., Yun, H., and Yoon, S., 1998, Calcareous nannoplakton from Seoguipo Formation of Cheju island, Korea and its paleooceanographic implimentations, Paleontological Research, 2, 253-265.
  36. Yoon, S., 1997, Miocene-Pleistocene volcanism and tectonics in southern Korea and their relationship to the opening of the Japan Sea, Tectonophysics, 281, 53-70. https://doi.org/10.1016/S0040-1951(97)00158-3