References
- Allwein, E. L., Schapire, R. E. and Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 1, 113-141.
- Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263-286.
- Espinoza, M., Suykens, J. A. K. and De Moor, B. (2005). Load forecasting using least squares support vector machines. Lecture Notes in Computer Science, 3512, 1018-1026.
- Girolami, M. (2003). Orthogonal series density estimation and kernel eigenvalue problem. Neural Computation, 14, 669-688.
- Hwang, C. (2007). Kernel machine for Poisson regression. Journal of Korean Data & Information Science Society, 18, 767-772.
- Hwang, C. (2008). Mixed effects kernel binomial regression. Journal of Korean Data & Information Science Society, 19, 1327-1334.
- Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
- Lee, Y. , Lin, Y. and Wahba, G. (2001). Multicategory support vector machines, Technical Report 1043, Department of Statistics, University of Wisconsin.
- Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, A, 415-446.
- Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine Learning Research, 5, 101-141.
- Shim, J., Bae, J. and Hwang, C. (2008). Multiclass classification via LS-SVR. Communications of the Korean Statistical Society, 15, 441-450. https://doi.org/10.5351/CKSS.2008.15.3.441
- Shim, J., Park, H. and Hwang, C. (2009). A kernel machine for estimation of mean and volatility functions. Journal of Korean Data & Information Science Society, 20, 905-912.
- Shim, J. and Seok, K. H. (2008). Kernel poisson regression for longitudinal data. Journal of Korean Data & Information Science Society, 19, 1353-1360.
- Suykens, J. A. K. and Vanderwalle, J. (1995). Least square support vector machine classifier. Neural Processing Letters, 9, 293-300.
- Suykens, J. A. K. and Vandewalle, J. (1999). Multiclass least squares support vector machines. Proceeding of the International Joint Conference on Neural Networks, 900-903.
- Suykens, J. A. K. (2001). Nonlinear modelling and support vector machines. Proceeding of the Instrumentation and Measurement Technology Conference, 287-294.
- Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.
- Vapnik, V. N. (1998). Statistical learning theory, Springer, New York.
- Weston, J. and Watkins, C. (1998). Multi-class SVM, Technical Report 98-04, Royal Holloway University of London.
- Williams, C.K.I. and Seeger, M. (2001). Using the Nystrom method to speed up kernel machines. Advances in Neural Information Processing Systems, 13, 682-699.