References
- Ahmad, S. Irons, B. M, and Zienkiewicz, O. C., Analysis of thick and thin shell structures by curved finite elements, Int. J. Num. Meth. Eng. Vol. 2, pp. 419-451, 1970. https://doi.org/10.1002/nme.1620020310
- Bathe, K. J. and Dvorkin, E. N. A formulation of general shell elements-The use of mixed interpolation of tensorial components, Int. J. Num.Meth. Eng. Vol. 22, pp. 697-722, 1986. https://doi.org/10.1002/nme.1620220312
- Bathe, K. J., Ozdemir, H. and Wilson, E. L. Static and dynamic geometric and material nonlinear analysis, UC SESM 74-4, (University of California, Berkeley, California), 1974.
- Belytschko, T., Wong, B. L., and Stolarski, H. Assumed strain stabilization procedure for the 9-node Lagrange shell element, Int. J. Num.Meth .Eng. Vol. 28, pp. 385-414, 1989. https://doi.org/10.1002/nme.1620280210
- Bucalem, M. L. and Bathe, K. J. Higher-order MITC general shell elements, Int. J. Num. Meth.Eng. Vol. 36, pp. 3729-3754, 1993. https://doi.org/10.1002/nme.1620362109
- Donell, L. H. Stability of thin-walled tubes under torsion. NASA Report 479, Washington, DC, 1933.
- Huang, H. C., and Hinton, E. A new nine node degenerated shell element with enhanced membrane and shear interpolation, Int. J. Num. Meth. Eng. Vol. 22, pp. 73-92, 1986. https://doi.org/10.1002/nme.1620220107
- Hughes, T. J. R., and Liu, W. K. Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput. Methods Appl. Mech. Eng. Vol. 26, pp. 331-362, 1981. https://doi.org/10.1016/0045-7825(81)90121-3
- Jang, J., and Pinsky, P. M. An assumed covariant strain based 9-node shell element, Int. J. Num. Meth. Eng. Vol. 24, pp. 2389-2411, 1987. https://doi.org/10.1002/nme.1620241211
- Kim, K. D., Lomboy, G. R. and Han, S. C. A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells, Comput. Mech, Vol. 30(4), pp. 330-342, 2003. https://doi.org/10.1007/s00466-003-0415-6
- Kim, K. D. and Park, T. H. An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells, Struct. Eng. Mech. Vol. 13, pp. 1-18, 2002. https://doi.org/10.12989/sem.2002.13.1.001
- Lakshminarayana, H. V. and Kailash, K. A shear deformable curved shell element of quadrilateral shape, Comput. Struct. Vol. 33, pp. 987-1001, 1989. https://doi.org/10.1016/0045-7949(89)90434-3
- Lee, W. H. and Han, S. C. Free and forced vibration analysis of laminated composite plates and shells using a 9-node assumed strain shell element, Comput. Mech. Vol. 39, pp. 41-58, 2006. https://doi.org/10.1007/s00466-005-0007-8
- Leissa, A. W. Vibrations of shells. NASA PA-288, Washington, DC, 1973.
- Liew, K. M. Research on thick plate vibration: a literature survey, J. Sound Vib. Vol. 180, pp. 163-176, 1995. https://doi.org/10.1006/jsvi.1995.0072
- Liu, W. K., Lam, D., Law, S. E., and Belytschko, T. Resultant stress degenerated shell element, Comput. Meth. Appl. Mech. Eng. Vol. 55, pp. 259-300, 1986. https://doi.org/10.1016/0045-7825(86)90056-3
- Love, A. E. H. The small vibrations and deformations of thin elastic shell, Philosophical Transactions of the Royal Society Vol. 179, pp. 527-546, 1888.
- Ma, H. and Kanok-Nukulchai, W. On the application of assumed strained methods (eds.) Kanok-Nukulchai et al., Structureal Engineering and Construction, Achievements, Trend and Challenges, AIT, Thailand, 1989.
- MacNeal, R. H. and Harder, R. L. A proposed standard set of problems to test finite element accuracy, Finite Elements in Analysis and Design Vol. 1, pp. 3-20, 1985. https://doi.org/10.1016/0168-874X(85)90003-4
- Park, T. H., Kim, K. D. and Han, S. C. Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element, Compos. Part B-Eng. Vol. 37(2-3), pp. 237-248, 2006.
- Qatu, M. S. Review of shallow shell vibration research, Shock and Vibration Digest Vol. 24, pp. 3-15, 1992.
- Ramm, E. A plate/shell element for large deflections and rotations. Nonlinear finite element analysis in structural mechanics, W. Wunderlich, E. Stein, and K. J. Bathe, eds., M.I.T. Press, New York, 1977.
- Reddy, J. N. Mechanics of composite plates and shells: Theory and Analysis, 2nd edn. CRC press, Boca Raton, 2004.
- Simo, J. C., and Hughes, T. J. R. On the variational formulations of assumed strain methods, J. Appl. Mech. Vol. 53, pp. 51-54, 1986. https://doi.org/10.1115/1.3171737
- Srinivas, C. V., Rao, J. and Rao, A. K. An exact analysis for vibration of simply supported homogeneous and laminated, thick rectangular plates. J. Sound Vib. Vol. 12, pp. 187-199, 1970. https://doi.org/10.1016/0022-460X(70)90089-1
- Yunqian, Q., Norman, F. and Knight, J. A refined first-order shear-deformation theory and its justification by plane-strain bending problem of laminated plates, Int. J. Solids Struct. Vol. 33(1), pp. 49-64, 1996. https://doi.org/10.1016/0020-7683(95)00010-8
- 이원홍, 한성천, 박원태, 점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석, 한국산학기술학회논문집 제9권 제4호, pp. 1043-1049, 2008. https://doi.org/10.5762/KAIS.2008.9.4.1043
- 한성천, 이창수, 김기동, 박원태 (2007) 4절점 준적합 쉘요소를 이용한 점진기능재료(FGM) 판과 쉘의 구조적 안정 및 진동연구, 한국방재학회논문집 제7권 제5호, pp. 47-60.