The Rapid Detection of Antioxidants from Safflower Seeds (Carthamus tinctorius L.) Using Hyphenated-HPLC Techniques

Hyphenated-HPLC 기술을 활용한 홍화씨의 항산화 성분 분석

  • Kim, Su-Jin (Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Kim, Sang-Min (Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Kang, Suk-Woo (Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Um, Byung-Hun (Korea Institute of Science and Technology (KIST) Gangneung Institute)
  • 김수진 (한국과학기술연구원 강릉분원, 천연물소재센터) ;
  • 김상민 (한국과학기술연구원 강릉분원, 천연물소재센터) ;
  • 강석우 (한국과학기술연구원 강릉분원, 천연물소재센터) ;
  • 엄병헌 (한국과학기술연구원 강릉분원, 천연물소재센터)
  • Received : 2010.02.22
  • Accepted : 2010.03.22
  • Published : 2010.08.31

Abstract

Hyphenated-HPLC techniques combine the separation power of HPLC with the structural and bioactivity information provided by NMR, ESI/MS, and an on-line antioxidant screening system. The major advantages over the traditional off-line techniques are rapidity and efficiency. In this study, we used hyphenated HPLC techniques including online HPLC-ABTS, LC-NMR, and LC-MS todirectly identify the major antioxidants of safflower (Carthamus tinctorius L.) seeds. The results demonstrated that the major antioxidant compounds from on-line HPLC-ABTS analysis were identified as 8'-hydroxyarcgenin-4'-O-$\beta$-D-glucoside, N-(p-coumaroyl) serotonin, and N-feruloylserotonin. Among them, N-feruloylserotonin accounted for almost 50% of the ABTS radical scavenging activity of the total extract. The results demonstrate that HPLC hyphenated techniques can be used to rapidly screen and structurally identify antioxidants from crude plant extracts.

본 연구에서는 세 종류의 hyphenated-HPLC 기술을 활용하여 홍화씨로부터 3종의 항산화 화합물의 구조를 규명하였다. 우선 온라인 항산화 분석 장치를 통하여 홍화씨 추출물로부터 ABTS 라디칼 소거활성을 가지는 성분을 검색 및 항산화 정량을 수행한 후, 단일 물질로 분리되고, 항산화 활성을 가지는 세 가지 화합물에 대해서 구조 규명을 시도하였다. 우선 LC-NMR을 이용하여 stop-flow mode에서 이들 세 가지 화합물에 대해 $^1H$-NMR spectrum데이터를 얻은 결과 각 화합물은 8'-hydroxyarctigenin-4'-O-$\beta$-D-glucoside, N-(p-coumaroyl) serotonin, N-feruloylserotonin으로 확인되었다. 그리고 LC-ESI-MS를 활용하여 각 화합물에 대한 분자량에 대한 정보를 얻어 LC-NMR에서 규명된 화합물이 정확함을 다시 한 번 확인할 수 있었다. 본 연구에서는 기존의 탐색방법인 여러 크로마토그래피 방법이나 preparative HPLC 등을 이용하여 활성물질을 분리하고 off-line NMR, MS 등을 활용하여 구조를 규명하는 방법에 비하여, hyphenated-HPLC 방법을 활용하여 혼합물 상태인 추출물을 분리하지 않고 신속하게 단일 성분의 구조를 규명하고, 또한 각각의 성분에 대한 항산화도를 측정할 수 있다는 장점이 있음을 증명하였다. 이는 천연물 또는 식품 분야의 연구에 있어 추출물의 항산화 성분을 분석하고 그 구조를 신속 간편하게 확인할 수 있으므로 항산화 성분 탐색 및 변이 연구에 매우 유용하리라 생각된다.

Keywords

References

  1. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidant. J. Food Sci. 70: 11-19 (2005) https://doi.org/10.1111/j.1365-2621.2005.tb09053.x
  2. Perron NR, Brumaghim JL. A review of the antioxidant mechanmism of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 53: 75-100 (2009) https://doi.org/10.1007/s12013-009-9043-x
  3. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36: 333-338 (2004)
  4. Cai YZ, Sun M, Xing J, Luo Q, Corke H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78: 2872-2888 (2006) https://doi.org/10.1016/j.lfs.2005.11.004
  5. Pietta PG. Flavonoids as antioxidants. J. Agr. Food Chem. 63: 1035-1042 (2000)
  6. Harris CS, Burt AJ, Saleem A, Le PM, Martineau LC, Haddad PS, Bennett SA, Arnason JT. A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem. Analysis 18: 161-169 (2007) https://doi.org/10.1002/pca.970
  7. Kim CY, Lee HJ, Lee EH, Jung SH, Lee DU, Kang SW, Hong SJ, Um BH. Rapid identification of radical scavenging compounds in blueberry extract by HPLC coupled to an on-line ABTS based assay and HPLC-ESI/MS. Food Sci. Biotechnol. 17: 846-849 (2008)
  8. Volger B, Klaiber I, Roos G, Walter CU, Hiller W, Sandor P, Kraus W. Combination of LC-MS and LC-NMR as a tool for the structure determination of natural products. J. Nat. Prod. 61: 175-178 (1998) https://doi.org/10.1021/np970416z
  9. Lin Y, Schiavo S, Orjala J, Vouros P, Kauts R. Microscale LCMS- NMR platform applied to the identification of active cyanobacterial metabolites. J. Agr. Food Chem. 80: 8045-8054 (2008)
  10. Kang SW, Kim MC, Kim CY, Jung SH, Um BH. The rapid identification of isoflavonoids from Belamcanda chinensis by LCNMR and LC-MS. Chem. Pharm. Bull. 56: 1452-1454 (2008) https://doi.org/10.1248/cpb.56.1452
  11. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR. Modified 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agr. Food Chem. 54: 1151-1157 (2006) https://doi.org/10.1021/jf051960d
  12. Dapkevicius A, van Beek TA, Niederlnder HA. Evaluation and comparison of two improved techniques for the on-line detection of antioxidants in liquid chromatography eluates. J. Chromatogr. A 912: 73-82 (2001) https://doi.org/10.1016/S0021-9673(01)00548-9
  13. Niederlnder HA, van Beek TA, Bartasiute A, Koleva II. Antioxidant activity assays on-line with liquid chromatography. J. Chromatogr. A 1210: 121-134 (2008) https://doi.org/10.1016/j.chroma.2008.09.061
  14. Pukalskas A, van BeeK TA, de Waard P. Development of a triple hyphenated HPLC-radical scavenging detection-DAD-SPE-NMR system for the rapid identification of antioxidant in complex plant extracts. J. Chromatogr. A 1074: 81-88 (2005) https://doi.org/10.1016/j.chroma.2005.03.089
  15. Palter R, Lundin RE, Fuller G. A new steroid from safflower. Phytochemistry 11: 819-822 (1972) https://doi.org/10.1016/0031-9422(72)80055-4
  16. Palter R, Lundin RE, Haddon WF. A cathartic lignan glycoside isolated from Carthamus tinctorus. Phytochemistry 11: 2871-2874 (1972) https://doi.org/10.1016/S0031-9422(00)86527-9
  17. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841-1856 (2005) https://doi.org/10.1021/jf030723c
  18. Kim JH, Kim JK, Kang WW, Ha YS, Choi SW, Moon KD. Chemical compositions and DPPH radical scavenger activity in different sections of safflower. J. Korean Soc. Food Sci. Nutr. 32: 733-738 (2003) https://doi.org/10.3746/jkfn.2003.32.5.733
  19. Kim EO, Oh JH, Lee SK, Lee JY, Choi SW. Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Sci. Biotechnol. 16: 71-77 (2007)
  20. Chung SH, Moon YJ, Kim SG, KIm KY, Lee KT, Kim HK, Whang WK. Isolation of flavonoids from Carthami Flos and their antioxidative activity. Yakhak Hoeji 52: 241-251 (2008)
  21. Stewart AJ, Mullen W, Crozier A. On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Mol. Nutr. Food Res. 49: 52-60 (2005) https://doi.org/10.1002/mnfr.200400064
  22. Niwa T, Etoh H, Shimizu A, Shimizu Y. cis-N-(p-Coumaroyl) serotonin from Konnyaku Amorphophallus Konjac K. Koch. Biosci. Biotech. Bioch. 64: 2269-2271 (2000) https://doi.org/10.1271/bbb.64.2269
  23. Jin Q, Yue J, Shan L, Tao G, Wang X, Qiu A. Process research of macroporous resin chromotography for separation of N-(p-coumaroyl) serotonin and N-feruloylserotonin from Chinese safflower seed extracts. Sep. Purif. Technol. 62: 370-375 (2008) https://doi.org/10.1016/j.seppur.2008.02.007
  24. Kang GH, Chang EJ, Choi SW. Antioxidant activity of phenolic compounds in roasted safflower (Carthamus tinctorious L.) seeds. J. Food Sci. Nutr. 4: 221-225 (1999)
  25. Cho SH, Park YY, Yoon JY, Choi SW, Ha TY. The effect of polyphenols from safflower seed on HMG-CoA reductase (HMGR) activity, LDL oxidation and Apo A1 secretion. Korean J. Food Sci. Technol. 38:279-283 (2006)
  26. Koyama N, Kuribayashi K, Seki T, Kobayashi K, Furuhata Y, Suzuki K, Arisaka H, Nakano T, Amino Y, Ishii K. Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. J. Agr. Food Chem. 54: 4970-4976 (2006) https://doi.org/10.1021/jf060254p
  27. Wolfender JL, Ndjoko K, Hostettmann K. The potential of LCNMR in phytochemical analysis. Phytochem. Analysis 12: 2-22 (2001) https://doi.org/10.1002/1099-1565(200101/02)12:1<2::AID-PCA552>3.0.CO;2-K