DOI QR코드

DOI QR Code

Transflective Dual Operating Mode Liquid Crystal Display with Wideband Configuration

  • Lee, Joong-Ha (School of Electrical Engineering, Research Institute of Computer, Information and Communication, Pusan National University) ;
  • Kim, Tae-Hyung (School of Electrical Engineering, Research Institute of Computer, Information and Communication, Pusan National University) ;
  • Yoon, Tae-Hoon (School of Electrical Engineering, Research Institute of Computer, Information and Communication, Pusan National University) ;
  • Kim, Jae-Chang (School of Electrical Engineering, Research Institute of Computer, Information and Communication, Pusan National University) ;
  • Jhun, Chul-Gyu (School of Display Engineering, Hoseo University) ;
  • Kwon, Soon-Bum (School of Display Engineering, Hoseo University)
  • 투고 : 2010.04.26
  • 심사 : 2010.06.28
  • 발행 : 2010.09.25

초록

This paper proposes a transflective configuration of the dual operating mode liquid crystal display, which has transmissive dynamic and reflective memory parts in its pixel. By employing a wideband structure and optimizing the cell-gap of the liquid crystal layer, the reflective memory part shows a very low reflectance in the dark state, good dispersion properties for the entire visible range, as well as high reflectance in the bright state. The transmissive dynamic part is designed to have the same cell-gap and rubbing direction as those of the reflective part. The driving voltage of the dynamic part and transmittance of the bright state can also be controlled by using compensation film with a positive a-plate, which can compensate the reflective part. Experimental results in the memory part operation demonstrate that the contrast ratio is over 50:1 and the reflectance in the dark state is reduced to 56% on average of that of the conventional dual mode configuration for the entire visible range. The contrast ratio of the dynamic part is 300:1.

키워드

참고문헌

  1. C. G. Jhun, C. P. Chen, U. J. Lee, S. R. Lee, T.-H. Yoon, and J. C. Kim, “Tristate liquid crystal display with memory and dynamic operating modes,” Appl. Phys. Lett. 89, 123507 (2006). https://doi.org/10.1063/1.2354430
  2. C. G. Jhun, J. H. Choi, T.-H. Yoon, and J. C. Kim, “Optical bouncing in bistable chiral splay nematic liquid crystal device,” Jpn. J. Appl. Phys. 45, 128-132 (2006). https://doi.org/10.1143/JJAP.45.128
  3. C. G. Jhun, K.-S. Min, S.-K. Park, S.-B. Kwon, T.-H. Yoon, and J. C. Kim, “Transflective dual operating liquid crystal display for memory and dynamic modes,” Jpn. J. Appl. Phys. 47, 2158-2160 (2008). https://doi.org/10.1143/JJAP.47.2158
  4. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895-3897 (1995). https://doi.org/10.1063/1.115309
  5. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73, 2811-2883 (1998). https://doi.org/10.1063/1.122598
  6. Y. Yamaguchi, T. Miyashita, and T. Uchida, “Wide-viewing-angle display mode for the active-matrix LCD using bend-alignment liquid-crystal cell,” in Proc. SID’93 Dig. (Washington State Convention Center, Seattle, WA, USA, May 1993), pp. 277-280.
  7. K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high-image-quality vertical-alignment-mode LCD,” in Proc. SID’97 Dig. (Hynes Convention Center, Boston, MA, USA, May 1997), pp. 845-848.
  8. M.-Y. Yu, B.-W. Lee, J.-H. Lee, and J.-H. Ko, “Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight,” J. Opt. Soc. Korea 13, 256-260 (2009). https://doi.org/10.3807/JOSK.2009.13.2.256
  9. Y.-H. Ju, J.-H. Park, J.-H. Lee, J.-Y. Lee, K.-B. Nahm, J.-H. Ko, and J.-H. Kim, “Study on the simulation model for the optimization of optical structures of edge-lit backlight for LCD applications,” J. Opt. Soc. Korea 12, 25-30 (2008). https://doi.org/10.3807/JOSK.2008.12.1.025
  10. D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett. 37, 109-111 (1980). https://doi.org/10.1063/1.91680
  11. G. P. Bryan-Brown, C. V. Brown, J. C. Jones, E. L. Wood, I. C. Sage, P. Brett, and J. Rudin, “Grating aligned bistable nematic device,” in Proc. SID’97 Dig. (Hynes Convention Center, Boston, MA, USA, May 1997), pp. 37-40.
  12. I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70, 1179-1181 (1997). https://doi.org/10.1063/1.118479
  13. X. J. Yu and H. S. Kwok, “Bistable bend-splay liquid crystal display,” Appl. Phys. Lett. 85, 3711-3713 (2004). https://doi.org/10.1063/1.1810215
  14. T.-H. Yoon, G. D. Lee, and J. C. Kim, “Nontwist quarterwave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25, 1547-1549 (2000). https://doi.org/10.1364/OL.25.001547
  15. S. H. Lee, T.-H. Yoon, and J. C. Kim, “Optimized configuration for transmissive and reflective bistable chiral-splay nematic liquid crystal device,” Appl. Phys. Lett. 88, 181101 (2006). https://doi.org/10.1063/1.2198476
  16. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72, 507-513 (1982). https://doi.org/10.1364/JOSA.72.000507

피인용 문헌

  1. Fast switching of long-pitch cholesteric liquid crystal device vol.19, pp.11, 2011, https://doi.org/10.1364/OE.19.010174
  2. Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure vol.20, pp.22, 2012, https://doi.org/10.1364/OE.20.024376
  3. Simple Model of Bright-room Contrast Ratio Measurement System for Plasma Display Panels with Contrast Enhancement Film vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.038
  4. Single panel liquid crystal device switchable between reflective and transmissive modes vol.44, pp.29, 2011, https://doi.org/10.1088/0022-3727/44/29/295101