DOI QR코드

DOI QR Code

Doppler LIDAR Measurement of Wind in the Stratosphere

  • Dong, Jihui (Key Laboratory of Atmospheric and Optical Radiation, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences) ;
  • Cha, Hyun-Ki (Korea Atomic Energy Research Institute) ;
  • Kim, Duk-Hyeon (Hanbat National University) ;
  • Baik, Sung-Hoon (Korea Atomic Energy Research Institute) ;
  • Wang, Guocheng (Key Laboratory of Atmospheric and Optical Radiation, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences) ;
  • Tang, Lei (Key Laboratory of Atmospheric and Optical Radiation, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences) ;
  • Shu, Zhifeng (Key Laboratory of Atmospheric and Optical Radiation, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences) ;
  • Xu, Wenjing (Key Laboratory of Atmospheric and Optical Radiation, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences) ;
  • Hu, Dongdong (Key Laboratory of Atmospheric and Optical Radiation, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences) ;
  • Sun, Dongsong (University of Science and Technology of China)
  • 투고 : 2010.06.30
  • 심사 : 2010.08.31
  • 발행 : 2010.09.25

초록

A mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the stratosphere has been developed in Hefei, China. First, the principle of wind measurement with direct detection Doppler LIDAR is presented. Then the configuration of the LIDAR system is described. Finally, the primary experimental results are provided and analyzed. The results indicate that the detection range of the designed Doppler LIDAR reached 50 km altitude, and there is good consistency between the molecular Doppler wind LIDAR(DWL) and the wind profile radar(WPR) in the low troposphere.

키워드

참고문헌

  1. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler LIDAR for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273-1276 (1989). https://doi.org/10.1029/GL016i011p01273
  2. D. Rees and I. S. McDermid, “Doppler LIDAR atmospheric wind sensor: re-evaluation of the 355nm incoherent Doppler LIDAR,” Appl. Opt. 29, 4133-4144(1990). https://doi.org/10.1364/AO.29.004133
  3. B. Gentry and H. Chen, “Profiling tropospheric winds with the Goddard LIDAR observatory for winds (GLOW),” in Proc. The 21st International Laser Radar Conference (Quebec, Canada, Jul. 2002), pp. 8-12.
  4. B. Gentry and H. Chen, “Tropospheric wind measurements obtained with the Goddard LIDAR observatory for winds (GLOW): validation and performance,” in Proc. The International Symposium on Optical Science and Technology (San Diego, CA, USA, Jul. 2001), pp. 30-31.
  5. B. M. Gentry and C. L. Korb, “Edge technique for high accuracy Doppler velocimetry,” Appl. Opt. 33, 5770-5777 (1994). https://doi.org/10.1364/AO.33.005770
  6. L. C. Korb, B. M. Gentry, and C. Y. Weng, “Edge technique: theory and application to the LIDAR measurement of atmospheric winds,” Appl. Opt. 31, 4002 (1992).
  7. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler LIDAR for low tropospheric wind observation,” Appl. Opt. 46, 7120-7131 (2007). https://doi.org/10.1364/AO.46.007120
  8. F. Shen, H. Cha, D. Su, D. Kim, and S. O. Kwon, “Low tropospheric wind measurement with Mie Doppler LIDAR,” Opt. Rev. 15, 204-209 (2008). https://doi.org/10.1007/s10043-008-0032-x
  9. C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind LIDAR for atmospheric measurements. I. instrumental setup, validation and first climatological results,” Appl. Opt. 38, 2410-2421 (1999). https://doi.org/10.1364/AO.38.002410
  10. C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind LIDAR for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38, 2422-2431 (1999). https://doi.org/10.1364/AO.38.002422
  11. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler LIDAR,” Opt. Lett. 25, 1231-1233 (2000). https://doi.org/10.1364/OL.25.001231
  12. C. Flesia, C. L. Korb, and C. Hirt, “Double-edge molecular measurement of LIDAR wind profiles at 355 nm,” Opt. Lett. 25, 1466-1468 (2000). https://doi.org/10.1364/OL.25.001466
  13. F. Shen, H. Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, “Design and performance simulation of a molecular Doppler wind LIDAR,” Chinese Optics Letters 7, 593-597 (2009). https://doi.org/10.3788/COL20090707.0593
  14. Z. Shu, L. Tang, J. Dong, F. Shen, D. Sun, X. Dou, and H. Cha, “Performance of the triple Fabry-Prot etalon for wind LIDAR,” Acta Optica Sinica 30, 1332-1336 (in Chinese) (2010). https://doi.org/10.3788/AOS20103005.1332

피인용 문헌

  1. Lidar-Measured Wind Profiles: The Missing Link in the Global Observing System vol.95, pp.4, 2014, https://doi.org/10.1175/BAMS-D-12-00164.1
  2. Theoretical description of improving measurement accuracy for incoherence Mie Doppler wind lidar vol.22, pp.2, 2013, https://doi.org/10.1088/1674-1056/22/2/024211