DOI QR코드

DOI QR Code

High Performance of Nano-sized LiFePO4 Positive Electrode Using Etched Al Current Collector

  • Lee, Gil-Won (Department of Chemical and Biological Engineering and Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Ryu, Ji-Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Oh, Seung-M. (Department of Chemical and Biological Engineering and Research Center for Energy Conversion & Storage, Seoul National University)
  • Received : 2010.03.22
  • Accepted : 2010.04.05
  • Published : 2010.08.28

Abstract

The electrodes comprising nano-sized $LiFePO_4$, carbon black and binder are prepared with two different Al current collectors. One is the generally used normal Al foil and the other is the chemically etched Al foil. Surface characteristics of each Al foil and electrochemical performance of the cathodes using each foil are investigated. The electrode from the etched Al foil exhibits better physical and electrochemical properties as compared to those of the normal Al foil because the etched Al foil has rough surface with sub-micron pores which improve the adhesion between the electrode materials and the substrate. The electrode on the etched Al foil has such a strong peel strength that the impedance is smaller than that of normal one. Indeed the $LiFePO_4$ electrode from the etched Al foil exhibits a better rate capability and remains intact even after storage for 1 week at the charged state at the elevated temperature $60^{\circ}C$.

Keywords

References

  1. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, 'Phospho-olivines as positive-electrode materials for rechargeable lithium batteries' J. Electrochem. Soc., 144, 1188 (1997). https://doi.org/10.1149/1.1837571
  2. A. Yamaha, S. C. Chung, and K. Hinokuma, 'Optimized $LiFePO_4$ for lithium battery cathodes' J. Electrochem. Soc., 148, A224, (2001). https://doi.org/10.1149/1.1348257
  3. V. Srinivasan, and J. Newman, ‘Discharge model for the lithium iron-phosphate electrode’ J. Electrochem. Soc., 151, A1517 (2004). https://doi.org/10.1149/1.1785012
  4. S. -Y. Chung, J. T. Bloking, and Y. -M. Chiang, ‘Electronically conductive phospho-olivines as lithium storage electrodes’ Nat. Mat., 1, 123 (2002). https://doi.org/10.1038/nmat732
  5. H. Huang, S. -C. Yin, and L. F. Nazar, ‘Approaching theoretical capacity of $LiFePO_4$ at room temperature at high rates’ Electrochem. Solid-State Lett., 4, A170 (2001). https://doi.org/10.1149/1.1396695
  6. D. Choi, and P. N. Kumta, ‘Surfactant based sol-gel approach to nanostructured $LiFePO_4$ for high rate Li-ion batteries’ J. Power Sources, 163, 1064 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.082
  7. N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, and M. Armand, ‘Electroactivity of natural and synthetic triphylite’ J. Power Sources, 97-98, 503 (2001). https://doi.org/10.1016/S0378-7753(01)00727-3
  8. C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, and B. Scrosati, ‘A high-rate, nanocomposite $LiFePO_4/Carbon$ cathode’ Electrochem. Solid-State Lett., 8, A484 (2005). https://doi.org/10.1149/1.1999916
  9. Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, and H. G. Pan, ‘Effects of carbon coating and iron phosphides on the electrochemical properties of $LiFePO_4/C$’ J. Power Sources, 184, 444 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.026
  10. P. S. Herle, B. Ellis, N. Coombs, and L. F. Nazar, ‘Nanonetwork electronic conduction in iron and nickel olivine phosphates’ Nat. Mat., 3, 147 (2004). https://doi.org/10.1038/nmat1063
  11. K. Striebel, J. Shim, A. Sierra, H. Yang, X. Song, R. Kostecki, and K. McCarthy, ‘The development of low cost $LiFePO_4-based$ high power lithium-ion batteries’ J. Power Sources, 146, 33 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.119
  12. M. Yao, K. Okuno, T. Iwaki, M. Kato, S. Tanase, K. Emura, and T. Sakai, ‘$LiFePO_4-based$ electrode using micro-porous current collector for high power lithium ion battery’ J. Power Sources, 173, 545 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.014
  13. Idaho National Laboratory, “Battery test manual for plug-in hybrid electric vehicles”, INL/EXT-07-12536, pp. 3-42, (2008).
  14. A. Eftekhari, ‘Aluminum oxide as a multi-function agent for improving battery performance of $LiMn_2O_4$ cathode’ Solid State Ionics, 167, 237 (2004). https://doi.org/10.1016/j.ssi.2004.01.016
  15. J. -H. Lee, U. Paik, V. A. Hackley, and Y. -M. Choi, ‘Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries’ J. Power Sources, 161, 612 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.087

Cited by

  1. Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials vol.6, pp.1, 2015, https://doi.org/10.5229/JECST.2015.6.1.1