DOI QR코드

DOI QR Code

산화물 환원공정에 의한 Bi-Sb-Te계 열전분말 합성

Synthesis of Bi-Sb-Te-based Thermoelectric Powder by an Oxide-reduction Process

  • Lee, Gil-Geun (Division of Materials Science and Engineering, Pukyong National University) ;
  • Kim, Sung-Hyun (Division of Materials Science and Engineering, Pukyong National University) ;
  • Ha, Gook-Hyun (Korea Institute of Materials Science) ;
  • Kim, Kyung-Tae (Korea Institute of Materials Science)
  • 투고 : 2010.06.30
  • 심사 : 2010.08.12
  • 발행 : 2010.08.28

초록

The present study focused on the synthesis of Bi-Sb-Te-based thermoelectric powder by an oxidereduction process. The phase structure, particle size of the synthesized powders were analyzed using XRD and SEM. The synthesized powder was sintered by the spark plasma sintering method. The thermoelectric property of the sintered body was evaluated by measuring the Seebeck coefficient and specific electric resistivity. The $Bi_{0.5}Sb_{1.5}Te_3$ powder had been synthesized by a combination of mechanical milling, calcination and reduction processes using mixture of $Bi_2O_3$, $Sb_2O_3$ and $TeO_2$ powders. The sintered body of the $Bi_{0.5}Sb_{1.5}Te_3$ powder synthesized by an oxide-reduction process showed p-type thermoelectric characteristics, even though it had lower thermoelectric properties than the sintered body of the $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric powder synthesized by the conventional melting-crushing method.

키워드

참고문헌

  1. A. Majumdar: Sci., 303 (2004) 777. https://doi.org/10.1126/science.1093164
  2. C. B. Vining: Nature, 413 (2001) 577. https://doi.org/10.1038/35098159
  3. B. C. Sales: Sci., 295 (2002) 1248. https://doi.org/10.1126/science.1069895
  4. K. Uemura and I. Nishida: Thermoelectric Semiconductor and its Application, Nikkankougyo Shinbunsya, Tokyo (1985) 13.
  5. G. Wiedemann and R. Franz: Ann. Phys., 89 (1853) 497.
  6. K. Uemura and I. Nishida: Thermoelectric Semiconductor and its Application, Nikkankougyo Shinbunsya, Tokyo (1985) 149.
  7. H. Scherrer and S. Scherrer: CRC Handbook of Thermoelectrics, D. M. Rowe (Ed.), CRC Press, New York (1995) 211.
  8. A. M. Rao, X. Ji and T. M. Tritt: MRS Bull., 31 (2006) 218. https://doi.org/10.1557/mrs2006.48
  9. B. Poudel, Q. Hao, J. Liu and M. S. Dresselhaus: Sci., 320 (2008) 634. https://doi.org/10.1126/science.1156446
  10. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen and Z. Ren: Nano Lett., 8 (2008) 2580. https://doi.org/10.1021/nl8009928
  11. W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt: Appl. Phys. Lett., 94 (2009) 102111. https://doi.org/10.1063/1.3097026
  12. Y. Xu, Z. Ren, W. Ren, K. Deng and Y. Zhong: Mater. Lett., 62 (2008) 763. https://doi.org/10.1016/j.matlet.2007.06.064
  13. J. J. Ritter and P. Maruthamuthu: Inorg. Chem., 34 (1995) 4278. https://doi.org/10.1021/ic00120a040
  14. J. J. Ritter and P. Maruthamuthu: Inorg. Chem., 36 (1997) 260. https://doi.org/10.1021/ic960616i
  15. T. Sun, X. B. Zhao, T. J. Zhu and J. P. Tu: Mater. Lett., 60 (2006) 2534. https://doi.org/10.1016/j.matlet.2006.01.033
  16. Y. Q. Cao, T. J. Zhu and X. B. Zhao: J. Alloy. Comp., 449 (2008) 109. https://doi.org/10.1016/j.jallcom.2006.01.116
  17. D. H. Kim and T. Mitani: J. Alloy. Comp., 399 (2005) 14. https://doi.org/10.1016/j.jallcom.2005.03.021
  18. G. G. Lee, D. Y. Lee and G. H. Ha: J. Kor. Powder Metall. Inst., 15 (2008) 352 (Korean). https://doi.org/10.4150/KPMI.2008.15.5.352
  19. D. E. Vanghan: Brit. J. App. Phys., 12 (1961) 414. https://doi.org/10.1088/0508-3443/12/8/312
  20. H. Masuda, K. Higashitani and H. Yoshida: Powder Technology Handbook, 3rd ed., CRC Press, New York (2006) 239.

피인용 문헌

  1. Thermoelectric Powder by Gas Atomization Process vol.18, pp.5, 2011, https://doi.org/10.4150/KPMI.2011.18.5.449